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1 Introduction

The overall burden associated with musculoskeletal (MSK) conditions surpasses that of
tobacco-related health effects, cancer, and diabetes (Barbour et al., 2017; United States Bone
and Joint Initiative, 2020). Osteoarthritis (OA) is the most common degenerative joint
disorder and a major worldwide challenge for health systems. OA is the leading cause of
chronic disability among older adults (Anderson et al., 2011; Oo et al., 2021). It is a
heterogenous condition with the pathogenesis differing across different joints. For example,
obesity and meta-inflammatory processes have a significant role in knee OA while the shape
of the joint and determinants of this are important in hip OA. Targeting the underlying
pathological processes will be important in order to develop effective therapies. Post-
traumatic OA (PTOA) develops after joint injury and is responsible for 12% of the cases
of OA in the US. According to the US Bone and Joint Initiative (https://www.usbji.org), 62%
of individuals with OA are women, being more prone to peripheral OA (hand, foot, knee)
and experiencing more severe pain and disabling than men (Hawker, 2019; Leifer et al., 2022;
Peshkova et al., 2022). Available pharmacological treatments only provide symptomatic pain
relief and fail to arrest the progressive degeneration of cartilage associated with PTOA or
idiopathic OA (Anderson et al., 2011; de Girolamo et al., 2016; de Girola et al., 2019). Surgical
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procedures that promote cartilage repair are expensive, require long
rehabilitation, and might expose patients to the risk of
complications. Thus, there is an imperative need to develop
prophylactic novel biologic means that either prevent or treat
early onset of the disease (Vincent, 2019; Vincent, 2020; Vincent
et al., 2022).

The current management of OA is gradual and depends on the
symptomatic evolution of the disease. Initially, a non-
pharmacological approach can be proposed, mainly based on
weight loss and the introduction of an adapted physical activity,
accompanied by a general awareness of the patient to a healthy
lifestyle (Skou and Roos, 2019). If insufficient symptom
improvement is achieved with non-pharmacological approaches,
pharmacological treatments using non-steroidal anti-inflammatory
drugs (NSAIDs) are proposed to reduce pain and inflammation
(Bannuru et al., 2019). Although their long-term efficacy and safety
are still controversial, intra-articular injections of corticosteroids or
hyaluronic acid, or a combination of both, are also being performed
to improve the symptoms in patients who did not respond to
conventional routes of analgesic administration (Fusco et al.,
2021; Peck et al., 2021). Moreover, with the advent of
orthobiologics, new potential therapeutic approaches are being
exploited to preserve and, potentially restore, the articular surface
(Kon et al., 2020; Kon and Di Matteo, 2021; Anzillotti et al., 2022).
The group of S. Chubinskaya* has extensively studied the
mechanisms of PTOA and the role of orthobiologics in cartilage
repair and regeneration and successfully contributed to the clinical
approval of the Agili-C implant (Anderson et al., 2011; de Girola
et al., 2019). However, no drug can restore joint integrity or even
stop the mechanisms leading to the development of OA and partial
or total joint replacement by a prosthesis is considered for end-stage
OA. Currently, 2,127 clinical trials related to OA (https://
clinicaltrials.gov, accessed on 15 April 2023 under “OA+ drugs +
interventional + female”) are underway to identify disease-
modifying OA drugs (DMOADs) (Dietz et al., 2021; Kennedy
et al., 2022). Of those expected to have clinical value, sprifermin
and lorecivivint (SM04690) recently entered phase II clinical trials.
Still, despite encouraging preliminary results in preclinical models
(Deshmukh et al., 2018; Deshmukh et al., 2019), these clinical trials
showed mitigated results on the global population studied, with
encouraging results obtained in one subtype of patients (Yazici et al.,
2020; Li et al., 2021).

Women have had a significant role in the translation of stem cell
studies to clinical trials including for OA. This required the
development of measurement tools to assess progression of
structural disease in OA. That cartilage loss can be detected in a
valid and reproducible way over 2 years was first shown using
magnetic resonance imaging (MRI) by Wluka et al. (Wluka et al.,
2004). This method was shown to detect the clinically important
outcomes of pain (Wluka et al., 2004) and knee replacement
(Cicuttini et al., 2004), meaning that it was now possible to use this
method for proof of concept trials in OA. This has led to the testing of
stem cells in those at high risk of OA, such as knee PTOA, with
favorable results (Wang et al., 2017). The trials in this area have been
summarized in a number of systematic reviews (Gong et al., 2021).
These have tended to find consistent evidence for a beneficial effect of
intra-articular injections of stem cells on articular cartilage and
subchondral bone, irrespective of the source or contents of the stem

cells. However, among the trials there remains significant heterogeneity
in the source and composition of the injected cells, small to modest
sample sizes, and the potential for publication bias. The use of stem cells
remains an exciting area of endeavor (Fortier, 2005), including for OA
where there is a lack of effective therapies. However, more work is
needed before such therapies can be recommended in the management
of the pathology.

In parallel with ongoing human studies, stem cells have been
employed in veterinary medicine (Fortier and Travis, 2011; Ferris
et al., 2014; Colbath et al., 2020) and the European Drugs
Regulations Agency already authorized the use of two products
based on stem cells (Arti-Cell Forte® and HorStem®) to treat mild to
moderate signs of OA associated with lameness in horses, following
various safety and efficacy studies of intra-articular injections (Bertoni
et al., 2019; Broeckx et al., 2019; Be et al., 2021). As for humans, MSK
injuries are themost prevalent and debilitating condition responsible for
pain (in the form of lameness) and loss of performance associated with
highly negative economic impact on the equine industry (IVIS, 2010). A
wider range of therapies are used in equine practice compared with
human practice to reduce the clinical signs and progression of OA
(Velloso Alvarez et al., 2020), although there is still no curative
treatment. In a “One Health, One Medicine” concept (Kahn, 2017),
preclinical studies in horses led to applications in humans and vice versa,
as recently illustrated by the marketing of the intra-articular
polyacrylamide hydrogel (Arthrosamid®) or of autologous
conditioned serum (ACS) (Camargo Garbin and Morris, 2021).
Large animals including livestock, dogs or horses have similar
biomechanical constraints to humans, leading to the development of
MSK diseases in a similar pathogenesis (Yazici et al., 2020). Therefore,
they are considered suitable target species and translational models for
researching new therapeutic approaches, while small animal models are
typically employed for investigating pathophysiological processes
(McCoy, 2015; Manivong et al., 2023). Horses in particular
demonstrated many similarities to human joints regarding articular
cartilage thickness, cellular structure, biochemical composition, and
mechanical properties. It is however interesting to note that in major
international equestrian competitions and races, all genders compete in
the same category and females achieve great victories (Hanousek et al.,
2018).

This opinion paper focuses on the manipulation of mesenchymal
progenitor cells as a promising therapeutic source of cells to treatMSK
disorders with a focus on OA. This initiative was established by
women researchers, with the purpose of highlighting some of the
critical women’s contributions in the field of MSK tissue regeneration
(including those of the current authors) as examples (Figure 1) with
particular attention drawn in the text on outstanding women and on
women (*) involved in the current opinion paper, and was performed
under the umbrella of the International Cartilage Regeneration and
Joint Preservation Society (ICRS; https://cartilage.org).

2 Cell-based therapies

2.1 Embryology and joint development,
progenitor cells in the joint

The limb forms during embryogenesis as a limb bud, from the
condensation of mesenchymal progenitor cells that
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chondrogenically differentiate into and form a cartilage anlage. This
cartilage anlage will undergo endochondral ossification to form long
bones, except at specific sites where an interzone is formed to give
rise to the joint structures (Decker et al., 2014). The initial interzone
consisting of growth and differentiation factor (Gdf)5+ cells
generated from descendants of chondrocytes which after
cavitation will form the articular cartilage and intra-articular
ligaments. Flanking cells recruited into the interzone from
surrounding tissues also express Gdf5 and will largely form the
synovial lining and joint capsule. In adult mouse synovium, cells that
originate from Gdf5-expressing joint interzone cells appear largely
negative for the skeletal stem cell markers Nestin, Leptin receptor,
and Gremlin1 (Roelofs et al., 2017), confirming a separate origin of
these progenitor cells in synovium and skeletal progenitor cells.
With different approaches, Decker et al. and Roelofs et al.
demonstrated that upon osteochondral injury in adult mice,
progenitor cells in the synovium proliferate and are recruited to
the defect to contribute to tissue repair and articular chondrocytes
have minimal contribution to tissue repair (Decker et al., 2017;
Roelofs et al., 2017).

2.2 Joint MSC sources

Although initially referred to as stem cells, the definition of
MSCs has been under discussion over the last decades
(Viswanathan et al., 2019). The term “MSCs” is
interchangeably used for Mesenchymal Stem Cells,
Mesenchymal Stromal Cells, Medicinal Signaling Cells, or
Multipotent Stromal Cells, and for the most part in
connection to a potential clinical use. In this review, we use

the term “MSCs” as such and the exact meaning refers to the
context of their potential clinical use: either to generate tissue or
to modulate tissue repair (Viswanathan et al., 2019). Distinct
progenitor cells are present in the different joint tissues but it
became clear that also within one tissue, different populations of
progenitor cells exist. Generally, one can discriminate
perivascular progenitor cell populations and populations
located in the stroma or the lining. In the human synovium,
the group of G. J. V. M. van Osch* (Sivasubramaniyan et al.,
2019) described progenitor cells that are CD45−CD31−CD73+

and discriminated a CD90− population in the intimal, synovial
lining layer and a CD90+ population in the subintimal,
perivascular area with distinct chondrogenic capacities.
Similarly, synovial-derived MSCs have been reported in
animal species by this group* (Teunissen et al., 2022).
Moreover, as reported by this group in collaboration with the
groups of E. Jones* (Sivasubramaniyan et al., 2018), in the human
bone marrow, two different populations of CD45−CD271+

mesenchymal progenitor cells were found: a perivascular
CD56− population with poor chondrogenic capacity and a
CD56+ bone lining population with good chondrogenic
capacity. In bone marrow aspirations, the less chondrogenic
perivascular population is more abundant than the bone lining
population. A higher abundance of the more chondrogenic bone
lining populations was found when the bone marrow was
collected after rasping the marrow canal before implanting a
prosthesis (Sivasubramaniyan et al., 2018). Bone marrow-derived
(BM) MSCs have also been isolated from animals (Fortier et al.,
1998; Kisiday et al., 2020). Thus, the location and way of
collecting MSCs is an important determinant for their capacity
to generate tissues.

FIGURE 1
Women Input on Stem Cells for MSK Regeneration (initials in pink indicate the research contributions of the current authors).
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Subcutaneous adipose tissue has gained popularity as a source of
MSCs more recently compared with bone marrow. Nevertheless,
many research efforts have addressed it as an optimal tissue source
for a variety of clinical applications, as well as for an impressive
number of basic studies to clarify MSC properties. Adipose tissue is
indisputably a convenient tissue to harvest, with potentially no limit
in terms of quantity and it contains a higher number of MSCs
(adipose-derived stem cells, i.e., ASCs) with a similar
immunophenotype to BM MSCs, bar the higher expression of
CD34 seen in freshly isolated ASCs as shown by the groups of F.
J. van Milligen and of D. Noël* (Varma et al., 2007; Maumus et al.,
2013). Also, adipose tissue-derived MSCs have been reported by the
group of H. Roelofs (Melie et al., 2013) to possess a higher
immunomodulatory capacity than their bone marrow
counterparts, making ASCs a more appealing cell type compared
with BM MSCs in some clinical applications. ASCs are associated
with the so-called stromal vascular fraction (SVF), a heterogeneous
collection of cells composed of pre-adipocytes, endothelial precursor
cells, T regulatory cells, macrophages, smooth muscle cells, and
MSCs/pericytes indeed. Nevertheless, the SVF is a versatile cellular
system and the degree of heterogeneity depends on a variety of
factors, such as the adipose tissue harvest site, the digestion protocol,
and the patient’s own pathological status. For this reason, there is no
consensus on the exact definition and proportion of these cell types
within the SVF. Also, culturing SVF cells for even one passage can
profoundly alter their cellular composition as reported by Nunes
et al. (Nunes et al., 2013) and observed by the group of D. Noël*
(Domergue et al., 2016). From a therapeutic perspective, beyond
exploiting the adipose tissue for the isolation and in vitro expansion
of ASCs, the relatively higher abundance ofMSCs within the adipose
tissue has driven the development of several medical devices to
isolate the SVF intra-operatively without the need for further cell
expansion. These devices can either provide mechanical digestion of
the adipose tissue resulting in a mechanical-SVF as reported by the
group of Y. Kul (Tiryaki et al., 2022) and observed by the group of D.
Noël* (Bony et al., 2016) or resize the adipose tissue into
microfragments while removing oil and blood contaminants and
resulting into microfragmented adipose tissue as shown by the
group of L. de Girolamo* (Ulivi et al., 2022). Notably, in
addition to the subcutaneous adipose tissue, other adipose sites
have been investigated as MSC sources. In particular, in the MSK
field ASCs isolated from the infrapatellar fat pad (or Hoffa’s body)
have been demonstrated to possess a differentiation ability equal or
even superior to subcutaneous ASCs (Lopa et al., 2014; Sun et al.,
2018).

MSCs have additionally been found in healthy and OA synovial
fluid (SF) by the group of E. Jones* (Jones et al., 2004; Jones et al.,
2008) and in patients with chondral defects by G. J. V. M. van Osch*
and K. Wright (Garcia et al., 2020). Compared with BM MSCs, SF
MSCs are highly proliferative and consistently chondrogenic (Jones
et al., 2008). In OA human knees, as shown in the work of the group
of E. Jones* (Ilas et al., 2019; Sanjurjo-Rodriguez et al., 2019),
subchondral BM MSCs are driven towards osteogenesis in order
to rapidly compensate for load distribution alterations following the
loss of cartilage. In contrast, they showed that SF MSCs from the
same knees express higher levels of cartilage formation and turnover
genes, and lower levels of ossification molecules (Sanjurjo-
Rodriguez et al., 2020). Furthermore, SF MSCs display a pro-

chondrogenic and immunomodulatory response following a
joint-sparing, knee joint distraction procedure (Sanjurjo-
Rodriguez et al., 2020). Owing to their apparent ability to
respond to biomechanical cues, both types of joint-resident MSCs
can be manipulated towards cartilage regeneration using
mechanically-competent scaffolds and smart biomaterials.

MSCs have also been isolated from the articular cartilage by
the group of L. A. Vonk (Rikkers et al., 2021; Rikkers et al., 2022)
and peripheral blood (PB-MSCs), both showing a certain ability
for osteochondrogenic differentiation (Mödder and Khosla,
2008; Beane and Darling, 2012; Martinello et al., 2013; Orth
et al., 2014; Frisch et al., 2015a; Rikkers et al., 2021; Rikkers et al.,
2022). Other sources of MSCs include perinatal MSCs from the
umbilical cord blood or connective tissue or from the amniotic
fluid and membrane (El Omar et al., 2014; Gómez-Leduc et al.,
2016; Borghesi et al., 2019; Lepage et al., 2019; Hyland et al., 2020;
Perry et al., 2021) as well as embryonic stem cells (ESCs) (Hwang
et al., 2008), all with chondrogenic abilities and showing a higher
potential for self-renewal and lower immunogenic and
tumorigenic activities relative to adult MSCs. Of further note,
as shown by the groups of É. Velot*, of J. Elisseeff, and of S.
J. Kimber and by Lepage et al. and Borghesi et al. (Hwang et al.,
2006; Oldershaw et al., 2010; El Omar et al., 2014; Dostert et al.,
2017; Borghesi et al., 2019; Lepage et al., 2019; Mesure et al., 2019;
Velot et al., 2021), MSCs from birth tissues have a better
accessibility and can be non-invasively isolated in large
amounts relative to adult MSCs while showing fewer ethical
issues compared with ESCs.

The number of MSCs that can be obtained from a donor is
limited. ESCs and induced pluripotent stem cells (iPSCs) represent a
potentially unlimited source of chondrocytes. Protocols from ESCs
have been adapted for iPSCs with slight variations. These stem cells
can be used to specifically generate hypertrophic or non-hypertrophic
chondrocytes as shown in particular by the groups of S. J. Kimber, of
R. A. Kandel, of S. Diederichs, and of W. Richter (Oldershaw et al.,
2010; Craft et al., 2013; Cheng et al., 2014; Diederichs and Tuan, 2014;
Diederichs et al., 2019a). Non-hypertrophic chondrocytes generated
from human ESCs have been reported to promote the repair of focal
cartilage defects in rats (Cheng et al., 2014). Hypertrophic
chondrocytes are generally generated from iPSCs by first
differentiating them into iPSC-derived MSC-like progenitor cells
(iMPCs). iMPCs generated from human BM MSCs were
comparable to the parental MSCs, although iMPCs appear less
responsive to traditional MSC differentiation protocols (Diederichs
and Tuan, 2014). The considerable heterogeneity in chondrogenesis
found using iMPCs has been associated with variable SRY-related
high-mobility-group-box gene 9 (SOX9) protein expression, with low
SOX9 levels correlating to high levels of the SOX9-antagonizing hsa-
miR-145 (Diederichs et al., 2016). Still, the clinical use of iPSCs
remains controversial since these cells are potentially tumorigenic and
immunogenic, with an instability of their genome (Hackett and
Fortier, 2011; Guzzo et al., 2013; Schnabel et al., 2014; Vonk et al.,
2015; Driessen et al., 2017; Xu et al., 2019; Velot et al., 2021). However,
the secretome of iPSC-derived MSCs (iMSCs) primed with tumor
necrosis alpha (TNF-α) and interferon gamma (IFN-γ) has a high
resemblance to BM MSCs, with iMSC-derived extracellular
vesicles (EVs) showing similar in vitro immunomodulation
(Ramos et al., 2022).
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2.3 MSCs versus tissue-specific cells for joint
regeneration

Murphy* et al. were the first to intra-articularly inject BMMSCs
and study their potential for the treatment of OA using a caprine
model (Murphy et al., 2003). Many studies in animals and in human
patients followed. Since cell tracking studies showed only limited
cartilage formation by these cells (Murphy et al., 2003; Hamilton
et al., 2019; Markides et al., 2019; Perry et al., 2021), the mechanism
of action was hypothesized to be related to factors secreted by the
MSCs (Hamilton et al., 2019; Markides et al., 2019; Perry et al.,
2021). Given their established immunomodulatory and trophic
properties, MSCs isolated from different sources have been
proposed as a viable therapeutic option to treat cartilage damage
and early OA (Lopa et al., 2019). The group of D. Noël* noted the
therapeutic efficiency of human and equine ASCs in the
inflammatory model of collagenase-induced OA (Ter Huurne
et al., 2012; Maumus et al., 2016). Intra-articular injection of
immune-selected allogeneic human mesenchymal precursor cells
were reported by the group of F. Cicuttini* to improve symptoms
and structure in PTOA, suggesting that they modulate some of the
pathological processes responsible for the onset and progression of
this phenotype (Wang et al., 2017). These cells help to establish a
“regenerative microenvironment” through the paracrine secretion of
bioactive molecules and promote tissue-specific progenitor
proliferation while inhibiting cell apoptosis and tissue fibrosis as
reported by the group of L. de Girolamo* (Colombini et al., 2019).
Among the molecules that play a role in the chondroprotective effect
of MSCs in OA, Fra-1, THBS1 and TGFβi have been noted by the
group of D. Noël* (Schwabe et al., 2016; Maumus et al., 2017; Ruiz
et al., 2020). Alternatively to MSCs, tissue-specific cells have been
also proposed as a valuable regenerative alternative for decades.
Autologous Chondrocyte Implantation or Transplantation (ACI/
ACT) was first developed in the 90s and since then has been used to
treat thousands of patients with satisfactory results compared with
other available techniques (Kon et al., 2013). Over time, a number of
implementations of the original techniques have been developed,
including the association of suitable biomaterials acting as scaffolds
for cell growth and colonization (MACI, matrix-assisted autologous
chondrocyte implantation) as shown by the large case series
published by the group of E. Kon* (Kon et al., 2012).
Nevertheless, while ACI/MACI resulted in the successful
treatment of focal isolated chondral injuries, the clinical
outcomes in patients with diffuse chondral damages are still
under debate (Colombini et al., 2022a). One of the possibilities to
make these techniques more effective in patients with diffuse
cartilage defects (i.e., early OA patients) is to focus on
chondroprogenitors. Chondroprogenitors are represented within
cartilage as cells with migratory, clonogenic ability, and
differentiation potential, found both in healthy and damaged
cartilage as reported by Vinod et al. (Vinod et al., 2023). In
addition to their direct stimulation within the cartilage, cartilage
progenitors, likewise MSCs, could indeed be exploited to improve
the existing cell-based therapies for the treatment of cartilage
defects. In this regard, the possibility to enrich the amount of
cartilage progenitors throughout in vitro expansion of the whole
cartilage cell population seems a valuable option to improve the
current results in early OA patients. It was observed that, with

increasing passages in culture, cartilage cell populations are
characterized by a progressive enhancement of clonogenic ability
and sustained expression of stemness markers. Moreover, these
expanded cells revealed a noteworthy chondrogenic potential, an
enhanced secretory response to inflammation compared withMSCs,
and strong immunomodulatory functions after inflammatory
priming as seen by De Luca et al. (De Luca et al., 2019).
Although data derived from animal models also show that
chondroprogenitors have the ability to attenuate OA, repair,
chondral defects, and form stable cartilage, displaying better
outcomes than BM MSCs, these preclinical data would require
further studies to optimize their use before clinical translation
(Vinod et al., 2023).

Another possibility would be to combine the favorable
properties of chondrocytes and MSC into a combined treatment.
Apart from anti-inflammatory or anti-catabolic effects, the
secretome of MSCs can also have trophic effects and in co-
culture with chondrocytes, both adipose tissue-derived and BM
MSCs demonstrated to enhance cartilage generation by the
chondrocytes as reported by the group of G. J. V. M. van Osch*
(Pleumeekers et al., 2018). This property of MSCs might explain the
potential of a proposed one-stage cell therapy for cartilage defects
where 75% of the chondrocytes can be replaced by MSCs
(US20140329316A1, US20100144036A1), although the initial
claim referring to an effect of the chondrocytes on the
differentiation of the MSCs cannot be fully excluded.

2.4 Differentiation and culture conditions for
appropriate MSK differentiation of MSCs,
priming, immunomodulation

MSCs can be differentiated into cartilage-like cells in vitro. A
large body of research from the groups of W. Richter and of G. J. V.
M. van Osch* have investigated the stability of the cartilage formed
by these cells and ways to improve this. They demonstrated that
chondrogenically differentiated MSCs, though, were shown to be
prone to endochondral ossification when implanted in vivo (Pelttari
et al., 2006; Farrell et al., 2009). This finding redirected the bone
tissue engineering field since more bone could be generated by pre-
differentiating MSCs chondrogenically than the original attempts of
pre-differentiating them towards the osteogenic lineage. Whereas
research mostly focused on stimulating the chondrogenic capacity of
these cells, such as, for example, by addition of parathyroid
hormone-related protein (PTHrP) (Fischer et al., 2014; Fischer
et al., 2016), TGFβi, NMB, or miR-29a as noted by the group of
D. Noël* (Ruiz et al., 2020; Maumus et al., 2021; Guérit et al., 2014),
inhibition of the anti-chondrogenic regulators became an emerging
area (Lolli et al., 2019a). Inhibition of SMAD1/5/9 (Helli et al., 2011),
WNT (Narcisi et al., 2015; Diederichs et al., 2019b), or anti-
chondrogenic miRNAs, such as, for example, miRNA221 (Lolli
et al., 2016) and miR-574–3p as observed by the group of D.
Noël* (Guérit et al., 2013), has shown promise to inhibit
hypertrophic differentiation. In addition to modulating
chondrogenesis during the differentiation phase, modulation of
the MSC expansion medium, for example, by the addition of
WNT (Narcisi et al., 2015) or of TNF-α (Voskamp et al., 2020)
resulted in improvement of chondrogenic capacity. The fact that
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these factors have demonstrated anti-chondrogenic properties
during the differentiation phase demonstrates the complexity and
importance of paying to the different stages of cell differentiation.

The immunomodulatory capacity of MSCs and ASCs can be
influenced by disease status of the joint as noted by the groups of G.
J. V. M. van Osch* and of G. Lisignoli* (Leijs et al., 2012; Manferdini
et al., 2020). The immunomodulatory ability of ASCs was not
affected by hypoxia as reported by the group of G. J. V. M. van
Osch* (Roemeling-van Rhijn et al., 2013), whereas it was positively
affected by an inflammatory stimulus such as interleukin 1 beta (IL-
1β) as observed by the groups of L. de Girolamo* and of D. Noël*
(Colombini et al., 2022b; Maumus et al., 2016). Similarly, the protein
cargo of umbilical cord EVs was affected by their pro-inflammatory
priming, but not in hypoxic conditions (Hyland et al., 2020).

2.5 Gene therapy

Stem cells are amenable to genetic modification to enhance their
reparative potential in a variety of MSK disorders. Gene therapy is the
transfer of candidate nucleic acid sequences as direct molecules or using
a gene vector derived from nonviral material (most commonly a
plasmid) or from viral material (adenoviral [AV], herpes simplex
viral, retro-/lentiviral [LV], or recombinant adeno-associated viral
[rAAV] vectors) to prolong the therapeutic effects of a gene product
compared with recombinant agents with short pharmacological half-
lives (Jorgensen et al., 2001; Noël et al., 2002; Jorgensen et al., 2003;
Djouad et al., 2009; van Osch et al., 2009; Vinatier et al., 2009; Coleman
et al., 2010; Ansboro et al., 2012; Cucchiarini et al., 2012; Demoor et al.,
2014; Frisch et al., 2015a; Docheva et al., 2015; Balmayor, 2015;
Cucchiarini, 2016; Fris et al., 2016; Jones et al., 2016; Rey-Rico and
Cucchiarini, 2017; Poh et al., 2018; Mesure et al., 2019; Roseti et al.,
2019; De la Vega et al., 2021; Amini et al., 2022). Gene therapy is
performed via classical gene transfer or using genome editing
methodologies such as use of the clustered regularly interspaced
short palindromic repeats (CRIPSR)-associated 9 (CRISPR/Cas9)
system (Tanikella et al., 2020). The contribution of women
researchers in the field of gene therapy to target stem cells is
broadly illustrated by reports showing the improved commitment of
stem cell to MSK profiles using various classes of gene transfer vectors.
Nonviral vectors carrying the SOX9 transcription factor were reported
by the group of A. Rey-Rico to activate MSC chondrogenesis (Carball
et al., 2022) (or the vascular endothelial growth factor - VEGF - to tackle
MSC osteogenesis and bone healing as noted by the group ofW. Richter
(Geiger et al., 2007)). Adenoviral vectors carrying IL-10 were
successfully used by the group of M. Murphy* to prevent OA
(Farrell et al., 2016) (or bone morphogenetic proteins - BMP-2,
BMP-6 - to modulate MSC osteogenesis and bone healing as
reported by the group of A. L. Bertone (Zachos et al., 2006; Zachos
et al., 2007; Murray et al., 2010; Ishihara et al., 2015)). rAAV vectors
were manipulated by the groups of C. R. Chu, of L. R. Goodrich, and of
M. Cucchiarini* to deliver the basic fibroblast growth factor (FGF-2)
(Cucchiarini et al., 2005; Cucchiarini et al., 2011), transforming growth
factor beta (TGF-β) (Pagnotto et al., 2007; Lee et al., 2011; Frisch et al.,
2014a; Frisch et al., 2016; Frisch et al., 2017a; Cucchiarini et al., 2018),
insulin-like growth factor I (IGF-I) alone (Frisch et al., 2014b;
Cucchiarini and Madry, 2014; Frisch et al., 2015b; Frisch et al.,
2017b) or with TGF-β (Morscheid et al., 2019a; Morscheid et al.,

2019b), BMP-3 (Venkatesan et al., 2022), SOX9 (Cucchiarini et al.,
2013), and chondromodulin (Klinger et al., 2011) to stimulate MSC
chondrogenesis and cartilage repair (or BMP-2 for MSC osteogenesis
(Ball et al., 2019)). Gene silencing in MSCs based on gene knockdown
strategies using RNA interference (RNAi) technology is also a potent
approach to modulate the reparative potential of these cells for MSK
regeneration (Lolli et al., 2017; Demoor et al., 2014). For instance,
silencing the antichondrogenic regulator microRNA 221 (miR-221) via
specific antagomiR-221 or antimiR-221 oligonucleotides is capable of
enhancing chondrogenesis and cartilage repair as seen in work from the
group of G. J. V. M. van Osch* (Lolli et al., 2016; Lolli et al., 2019b).

2.6 Gene therapy modifications

Adenoviral- and rAAV-based vectors, while considered the most
promising systems for OA, still have two main limitations: potential
anti-viral host immune responses and the levels of efficiency and
specificity of transgene expression in joint tissues. Targeting the joint
cells of interest is still arduous even using intra-articular injections.
Indeed, chondrocytes embedded in a dense extracellular matrix
(ECM) are less accessible than synovial, ligament, or fat pad cells.
In addition, disturbances in intracellular trafficking may decrease the
efficiency of viral vector transduction. To address these issues,
optimization of the carrier nucleic acid sequence and a
modification of viral vectors have been considered with increasing
interest. The capsids of adenoviral and rAAV vectors promote
tropism but can also be recognized by neutralizing antibodies
present in the circulation and synovial fluid as evidenced by the
group of N. Bessis (Cottard et al., 2004) due to a pre-existing
immunity, overall reducing the transduction efficiency. Yet, capsids
may be engineered to escape such neutralization, and in this context,
several improved hybrid AAV serotypes have emerged. Among them,
the rAAV 2.5, a chimera of AAV1 and AAV2, evaluated in preclinical
models of equine OA byWatson-Levings et al. (Watson Levings et al.,
2018a) is currently being used in a clinical trial for OA
(NCT05454566) and rAAV-DJ, which has been successfully used
in a preclinical rat model of OA by Martinez-Redondo et al.
(Martinez-Redondo et al., 2020). Also of interest in OA, Eichhoff
et al. (Eichhoff et al., 2019) designed an rAAV preferentially targeting
cells expressing the purinergic receptor (P2X7R) overexpressed in OA
chondrocytes. Chemical modification allowing a large panel of
chemical compounds or peptides to be coupled may also improve
capsids to limit off-target effects, overcome undesirable properties,
and permit viral escape from neutralizing antibodies. For instance, the
chondrocyte-affinity peptide (CAP) has been used by the group of P.
Pothacharoen (Chongchai et al., 2023) to enhance rAAV targeting of
chondrocytes. Finally, self-complementary AAV (scAAV) composed
of a double-stranded DNA genome have been successfully used by
Watson-Levings et al. (Watson Levings et al., 2018a; Watson Levings
et al., 2018b) to target chondrocytes, bypassing their step-limiting, low
rates of cell replication/proliferation.

2.7 Transcript therapy

Despite the clear advantages of gene therapy, safety concerns
related to viral vectors and affordability issues have restricted their
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clinical use as noted by the group of E. R. Balmayor* among others
(Evans, 2019; De la Vega et al., 2021) In fact, affordability remains a
pressuring issue, with gene therapy products tagged at $2 million a
dose (Dyer, 2020) related to the manufacturing process under Good
Manufacturing Practice (GMP). In addition, achieving efficient gene
transfer and appropriate levels of transgene expression proved to be
cumbersome for some applications as described by the group of E. R.
Balmayor* (De la Vega et al., 2021), motivating researchers to
explore alternatives to traditional MSK gene therapy. Applied to
tissue regeneration, gene therapies commonly deliver protein-
coding DNA. However, messenger RNA (mRNA), offers a more
efficient way to achieve protein translation while accommodating
numerous advantages as explained by Balmayor* et al. (Balmayor,
2022). Like traditional gene therapy, mRNA transcript therapy
offers control over the production of therapeutic proteins. In
addition, since mRNA function is conducted in the cell
cytoplasm, it results in an immediate initiation of translation.
Unlike viral gene therapy, mRNA transcript therapy is safe as it
does not carry the risk of insertional mutagenesis and oncogenesis.
Also, mRNA’s transient nature is valuable in many regenerative
medicine applications when long-term effects are not necessary as
stated by others and by Balmayor* et al. (Sahin et al., 2014; Balmayor
and Evans, 2019). mRNA is produced by in vitro transcription
(IVT), a relatively simple, single-reaction procedure easily
controllable and scalable and identical for all mRNAs, regardless
of the sequence. Importantly, no cell or bacterial culture is required,
reducing the risk of contamination. IVT allows the introduction of
numerous chemical modifications and the use of modified
nucleosides to produce defined mRNAs with reduced
immunogenicity and low stability, with costs described as up to
10-fold lower that their protein therapeutic counterparts as
demonstrated by K. Karikó among others (Karikó et al., 2005;
Weissman, 2015). The recent use of mRNA in COVID-19
vaccines receiving approval in various countries demonstrates
that this technology can be safe and efficient. Regarding MSK
regeneration, local mRNA delivery has been investigated mostly
for bone by the group of E. R. Balmayor* and by Badieyan et al. and
Khorsand et al. (Elangovan et al., 2015; Badieyan et al., 2016;
Balmayor et al., 2016; Balmayor et al., 2017; Khorsand et al.,
2017; Zhang et al., 2019; Fayed et al., 2021; Geng et al., 2021; De
La Vega et al., 2022; European Scoiety of Gene and Cell Therapy,
2022), with a strong focus on effective BMP-2 mRNAs but also with
an emerging interest for BMP-9 (Khorsand et al., 2017), BMP-7
(European Scoiety of Gene and Cell Therapy, 2022), and VEGF
mRNAs by Geng et al. (Geng et al., 2021). In one of the most
translatable studies performed to date, a BMP-2 mRNA
administered to rat femoral critical-size defects via a collagen
carrier was reported by the group of E. R. Balmayor* (De La
Vega et al., 2022) to remain local in a safe manner and to
efficiently induce bone healing in a dose-dependent manner. For
cartilage repair, mRNAs coding for the runt-related transcription
factor 1 (Runx1) (Aini et al., 2016), Link N by the group of M. Avci-
Adali (Tendulkar et al., 2019), and IGF-I (Wu et al., 2022) have been
investigated as OA treatments. Direct injections of Runx1 mRNA in
mouse OA knee joints significantly suppressed OA progression
(Aini et al., 2016) while injection of stem cells transfected with
an IGF-I mRNA in mouse knee joints safely enhanced cell survival
and engraftment in the cartilage tissue (Wu et al., 2022). Overall, all

these findings support the safety and efficacy of this emerging
technology for MSK regeneration.

3 Tissue engineering strategies

3.1 Tissue engineering

New tissue engineering therapeutic strategies mainly based on
the use of biomaterials combined with stem cells showed good
potential both in preclinical and clinical studies as reported by the
groups of G. Lisignoli*, of D. Noel* and of L. R. Goodrich and by
Nooeaid et al., Moradi et al., Taraballi et al., Armiento et al., and
Kwon et al. (Nooeaid et al., 2012; Moradi et al., 2017; Taraballi et al.,
2017; Yang et al., 2017; Armiento et al., 2018; Kwon et al., 2019;
Pascual-Garrido et al., 2019; Trucco et al., 2021, Valot et al., 2021;
Manferdini et al., 2022). Regenerative scaffold-based methods are
emerging as possible therapeutic alternatives for the treatment of
various types of cartilage lesions as noted by the group of E. Kon*
(Kon et al., 2015). In order to support the proliferation of live cells, a
scaffold is a temporary three-dimensional (3D) framework made of
biodegradable polymers that may replicate the highly structured
functional architecture of the articular cartilage. Chondrogenic
differentiation of MSCs can be achieved on different types of
scaffolds provided that a growth factor can be released to induce
the process as observed by the group of D. Noël* (Morille et al., 2013;
Morille et al., 2016; Mathieu et al., 2014). Different types of chondral
and osteochondral scaffolds have been used in the past, but the most
promising results have being obtained with biodegradable scaffolds
as observed by the group of E. Kon* (Kon et al., 2014; Kon et al.,
2018; Kon et al., 2021; Altschuler et al., 2023). The use of scaffolds is
often integrated with cells seeded on the scaffold itself. The group of
E. Kon* (Kon et al., 2008; Kon et al., 2012) was the first to use
articular chondrocytes in association with biomaterials for cartilage
regeneration in clinical practice with discrete success in treating
focal defects. Although some products containing chondrocytes and
biomaterials are still on the market, the necessity of addressing
different tissues and the need of modulating the joint environment
pushed towards the use of stem cells instead of chondrocytes.

Both natural and synthetic biomaterials have been used to
regenerate different joint tissues (cartilage, bone, meniscus) and
cells have been mainly seeded or encapsulated into these structures
for instance by Sanchez-Tellez et al., Yang et al., and Critchley et al.
(Sánchez-Téllez et al., 2017; Li et al., 2019; Yang et al., 2019;
Critchley et al., 2020; Rahman et al., 2022). However, the main
limitation of this approach is the retention of stem cells in the target
joint tissue that may be influenced by the presence of synovial fluid,
inflammation, load, and joint movement as noted by the groups of E.
Kon* and of G. J. V. M. van Osch* and by Bakhshandeh et al. (Fahy
et al., 2014; Perdisa et al., 2014; Bakhshandeh et al., 2017; Dong et al.,
2017). To overcome this issue, it is necessary to design advanced
biomaterials capable of retaining cells in situ, with
immunomodulating properties while at the same time, retaining
the capacity to stably adhere to damaged joint tissues and boost their
regeneration. Biomaterial stiffness and viscoelasticity, as other
critical parameters, are selected depending on the anatomical
characteristics of the regenerated joint tissues as reported for
instance by Sarem et al. (Sarem et al., 2018; Zhang et al., 2020;
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Huang et al., 2023). All biomaterial parameters directly control and
influence the characteristics of the cells by acting through specific
receptors directing their migration, proliferation, matrix synthesis,
and differentiation as observed by the group of G. Lisignoli* and by
Yang et al., Sarem et al., and Hafezi et al. (Sarem et al., 2018; Yang
et al., 2019; Hafezi et al., 2021; Sartore et al., 2021). These strategies
contribute to joint tissue regeneration by showing effects on
different physiological processes including inflammation,
metabolic processes, aging, apoptosis, and autophagy as shown
by the groups of E. R. Balmayor* and of G. Lisignoli* and by
Koh et al. (Amann et al., 2017; Chen et al., 2020; Koh et al., 2020;
Gabusi et al., 2022).

Stem cells have also been reported to secrete an ECM that may
be valuable for MSK regeneration. For instance, MSCs from the
connective tissue of the umbilical cord (Wharton’s jelly) produce
ECM components similar to those of articular cartilage as reported
by Russo et al. (Russo et al., 2022) and participate in MSC
chondrogenic differentiation, offering a potential scaffold that
may be used as an alternative to improve cartilage regeneration
as noted by Ramzan et al. (Ramzan et al., 2022).

3.2 Bioprinting, sustainable automated
manufacturing for therapeutic cells

Emerging technologies like additive manufacturing (three-
dimensional [3D] printing) will lead future directions for tissue
engineering therapeutic strategies. 3D printing replicates the
damaged tissue shape starting from the patient medical image. It
consists of the fabrication of living tissue/organ-like structures
throughout the bottom-up deposition of either cell-laden droplets
or cells embedded in a hydrogel, in both cases termed as “bioink” as
described for instance by Abdollahiyan et al. (Abdollahiyan et al.,
2020). Such a technology makes is possible to overcome issues
associated with more conventional methods like static (manual)
seeding onto scaffolds or dynamic seeding using bioreactors as
shown by the group of B. Grigolo* (Roseti et al., 2018). In these
cases, problems are due to cell accumulation at the surface of scaffold
and to the low density in the inner part where cells tend to die because
of the scarcity of nutrients. This may lead to inaccurate experimental
results and consequent speculation. Differently, 3D bioprinting offers
the advantage of fine control of cell spatial distribution in terms of
homogeneity. When scaffolds were cultured with chondrogenic or
osteogenic medium, cartilage and bone tissues were produced,
respectively, as determined by specific gene and protein expression
(Gao et al., 2015). Further benefits of 3D bioprinting techniques
include reduced production times, an increased versatility, and the
possibility to work at room temperature and “solvent-free” conditions,
taking advantage of the features of water-based gels such as bioinks as
reviewed by the groups of B. Grigolo* and of D. Noël* (Roseti et al.,
2017; Montheil et al., 2022). 3D bioprinting also enables the
fabrication of custom-made products based on patient’s medical
images. Such options improve the match between implant and
defect size, thus shortening the time required for surgery and for
patient recovery, and positively affecting the success of treatment.

Development and use of bio-inspired, fabricated bio-printed
constructs will require validated and relevant cell sources and/or use
of appropriate factors to attract endogenous stem cells to the

constructs. The cost of producing GMP-grade MSCs, or even
iMSCs, using manual processes is such that translation to patient
use at scale to enable widespread use is prohibitive and a critical
impediment in the field as noted by the group of M. Murphy* (Ochs
et al., 2022). The automation of production of advanced therapy
medicinal products (ATMPs), state-of-the-art medicines for human
use based on genes, tissues or cell-derived EVs can address this
hurdle to clinical translation as reported by the group of M.
Murphy* (Ochs et al., 2022).

3.3 From biologic substitutes to organoids,
3D models, and organ-on-a-chip

In accordance with the 3Rs concept (replacement, reduction,
refinement) and with the strategic directions of the European
Medicines Agency (EMA) (announcement of 29 September 2021)
to promote alternative approaches to animal models, the
development and use of effective alternative in vitro methods
before formal animal testing are now mandatory. Advanced
techniques such as biomanufacturing (3D bioprinting and
bioassembly) and organotypic models (organoids, organ-on-a-
chip) are gaining interest due to their ability to mimic OA
conditions. Although 2D and 3D cellular cultures have
limitations, they are still useful in answering fundamental
questions in a molecular, cellular, and tissue continuum and
provide a cost-effective platform for rapid, high-throughput
screening of new drugs, delivery systems, or biolubricants. This
provides an efficient standardized functional qualification without
the use of experimental animals for more ethical research
(Manivong et al., 2023). Tissue engineering studies conducted
since the emergence of ACT in 1994 by Brittberg (Brittberg
et al., 1994) led to the development of suitable biological
substitutes and refinement of organotypic models by the group of
M. Demoor* (Demoor et al., 2014). These mini-tissues/organoids
have been incorporated in some translational research studies by the
same group* (Desancé et al., 2018; Cullier et al., 2022) to develop
cell-based and cell-free orthobiological therapeutic approaches.
Therefore, some in vitro studies have been transposed from
humans (Legendre et al., 2013; Gómez-Leduc et al., 2016;
Gómez-Leduc et al., 2017; Legendre et al., 2017) to horses
(Desancé et al., 2018) again by this group* to demonstrate the
therapeutic potential of chondrocytes and stem cells for cartilage
engineering in both species and to have the possibility to carry out
preparatory work in horses before transposing it to humans.

4 Acellular therapies

4.1 Secretome

MSC capacity to induce tissue regeneration is due to its
secretome that comprises all cell secretions (growth factors,
cytokines, EVs, etc.). Among regenerative medicine strategies,
acellular or cell-free therapies requires the delivery of exogenous
active molecules, such as synthetic molecules or MSC secretome, as
therapeutic agents into the joint as reported by Velot* et al. (Dostert
et al., 2017; Velot et al., 2021).

Frontiers in Cell and Developmental Biology frontiersin.org08

Velot et al. 10.3389/fcell.2023.1209047

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1209047


Indeed, the secretome of BM MSCs that were primed with
inflammatory factors were shown to inhibit inflammatory processes
in human OA synovial explants in vitro as observed by the group of
G. J. V. M. van Osch* (van Buul et al., 2012). The activity of the
secretome of MSCs is not specific for BM MSCs (Manferdini et al.,
2020). The groups of G. Lisignoli* and of D. Noël* showed that
adipose tissue-derived MSCs (ASCs) have similar effects in vitro,
and their anti-inflammatory and anti-catabolic effects were
indicated to be dependent on the inflammatory status of the
chondrocytes or synoviocytes (Maumus et al., 2016). The
secretome of human BM MSCs reduced pain and joint
degeneration in a mouse model of OA (Khatab et al., 2018).

Most animal studies aimed at improving acellular MSC-based
therapies, especially in horses, are still predominantly conducted
in vitro as reported by Jammes et al. (Jammes et al., 2023). The same
author participated in a study (Contentin et al., 2022) that
specifically highlighted the pro-anabolic potential of equine MSC-
conditioned media containing exosomes on a cartilage organoid
model in vitro. Kearney et al. (Kearney et al., 2022) performed a
recent study in acute inflammatory arthritis by injection of
lipopolysaccharide (LPS) in horses, showing no difference
between the injection of allogenic BM MSCs and of their
secretome. Additionally, proofs of concept for the manufacturing
of clinical-grade equine and canine freeze-dried secretome which
present many advantages in terms of practical use (stability, easy to
store and use) have been published by Mocchi et al. (Mocchi et al.,
2021a; Mocchi et al., 2021b). These authors showed in a canine study
that an intra-articular injection of secretome in five dogs with OA
was safe, without significant adverse effects. These preliminary data
suggest that clinical trials may be established to evaluate the
potential of these therapies in the treatment of spontaneous OA
in animals.

4.2 Extracellular vesicles

Research is also well underway in animals to characterize the
MSC secretome in order to identify the most promising factors for
treating OA and to explore the EVs as potential biomarkers for
monitoring its progression (Anderson et al., 2022). In particular,
techniques for isolating and characterizing EVs have been described
for several types of MSCs and work on chondrocytes indicated that
MSC-EVs reduce gene expression of inflammatory markers
(Hotham et al., 2021; Arévalo-Turrubiarte et al., 2022).

MSCs produce large and small size EV subtypes that exert
similar protective effects on chondrocytes and anti-inflammatory
effects onmacrophages in vitro as reported by Vonk et al. and in vivo
in the collagenase-induced OA model of the group of D. Noël*
(Cosenza et al., 2017; Vonk et al., 2018). However, small size EVs
were more potent to suppress the clinical signs of inflammatory
arthritis in the collagen-induced model of the group of D. Noël*
(Cosenza et al., 2018). This observation was attributed to the
induction of a regulatory response by small size EVs as shown by
the upregulation of CD19+IL10+ Breg-like cells and the decrease in
plasmablast cells in the lymph nodes of mice. Down-regulating the
TGF-β-induced gene product-h3 (TGFBI/BIGH3) in MSCs partly
inhibited their anabolic effects on chondrocytes and did not protect
mice from developing OA. Although not demonstrated to be directly

related, the detection of TGFBI/BIGH3 in the cargo of both small
and large size EVs might explain the protective role of EVs in OA as
seen by the group of D. Noël* (Ruiz et al., 2020). Priming MSCs was
shown to modify their proteome and secretome as well as their
content in miRNAs, thereby modulating their functional properties,
in particular their immunoregulatory function as described by the
group of D. Noël* (Pers et al., 2021). Parental cell priming also
impacts the cargo of EVs and inflammatory priming was reported to
modulate cytokine andmiRNA levels in EVs and enhance their anti-
inflammatory potency (Ragni et al., 2020). Another strategy is based
on genetic engineering of MSCs to overexpress the hypoxia-
inducible factor 1 alpha (HIF-1α) and telomerase to generate
large-scale production of reproducible batches of MSC-derived
EVs with higher immunosuppressive activity (Gómez-Ferrer
et al., 2021). In addition, overexpression of several miRNAs in
MSCs or in synovial fibroblasts, as shown with miR-126–3p, may
suppress apoptosis and inflammation in chondrocytes and prevent
cartilage degradation in a OA model (Zhou et al., 2021).

Indeed, miRNAs were shown to be a crucial player for MSC-EVs
function. This paradigm has been confirmed for EVs released by
MSCs obtained from several sources such as adipose tissue, bone
marrow, and amniotic membrane as studied by the group of L. de
Girolamo* (Ragni et al., 2020; Ragni et al., 2021a; Ragni et al., 2022a).
With respect to EV-miRNA activity for orthopedic conditions, a
complex scenario has emerged with respect to how they can
function/contribute to MSC therapeutic potential. MSC-EVs are
enriched in miRNAs, predicted to suppress the activation of
immune cells and the production of OA-related inflammatory
mediators, as well as to promote cartilage protection by acting on
both chondrocyte homeostasis and extracellular matrix-degrading
enzymes. Most importantly, pre-activation of MSCs with pro-
inflammatory mediators allows for the release of EVs with
increased amounts of protective miRNAs, as clearly shown for
adipose MSCs (Ragni et al., 2020). These results were confirmed
by the group of L. de Girolamo* (Ragni et al., 2021b; Ragni et al.,
2022b) for EVs released fromMSCs in the presence of synovial fluid
from OA patients that is rich in pro-inflammatory molecules.
Consistently, when envisioned as a cell-free therapy, MSC-EVs
protected mice from developing OA, suggesting that these
nanoparticles can reproduce the main therapeutic effects of
secreting cells by reducing OA symptoms (Cosenza et al., 2017).
Notably, inhibition of inflammation (Cosenza et al., 2018) and
reduction of cartilage degradation (Cosenza et al., 2017) in vivo
confirmed in silico molecular data on EV-miRNAs fingerprints,
leading to the potential for new strategies using single miRNA
modulation (Xi et al., 2021) as a means to improve therapeutic
potential for both MSK disorders and other diseases where cutting-
edge treatments are actively needed.

Native EVs or EVs from primed cells do not necessarily contain
appropriate mediators to improve OA. The use of synthetic vesicles
such as liposomes may be a means to encapsulate and deliver
exogenous active molecules of interest to joint tissues via intra-
articular injection. This drug delivery system may counteract the
degradation of selected mediators and allow for their sustained
release in the joint (Velot et al., 2022). However, liposomes can
be silenced by immune cell phagocytosis. As the composition of EV
membrane prevents phagocytosis, new delivery systems to carry
selected active molecules may be developed by merging MSC-

Frontiers in Cell and Developmental Biology frontiersin.org09

Velot et al. 10.3389/fcell.2023.1209047

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1209047


derived EVs and liposomes to engineer a hybrid vesicle designed for
joint healing as reported by Velot* et al. and by others (Velot et al.,
2021; Elkhoury et al., 2022).

5 Combined approaches

5.1 Gene-activated matrices

MSK gene therapy has been further expanded by combining
gene transfer technologies with tissue engineering to generate
gene-activated matrices (GAMs), a powerful tool also referred to
as biomaterial-guided gene therapy, improving the
spatiotemporal, controlled delivery of therapeutic genes to
their targets (Borghesi et al., 2019; Perry et al., 2021; Hyland
et al., 2020; Hwang et al., 2008; Karikó et al., 2005; Weissman,
2015; Elangovan et al., 2015; Balmayor et al., 2016; Badieyan
et al., 2016; Balmayor et al., 2017; Khorsand et al., 2017; Zhang
et al., 2019; Geng et al., 2021; Fayed et al., 2021; De La Vega et al.,
2022; European Scoiety of Gene and Cell Therapy, 2022; Aini
et al., 2016; Tendulkar et al., 2019; Liu et al., 2022; Madry et al.,
2020a; Venkatesan et al., 2019; Cucchiarini and Madry, 2019;
Atasoy-Zeybek and Kose, 2018; Shapiro et al., 2018; Venkatesan
et al., 2018; Rey-Rico et al., 2017a; D’Mello et al., 2017; Rey-Rico
et al., 2016; Raisin et al., 2016; Cucchiarini et al., 2016; Raftery
et al., 2016; Rey-Rico and Cucchiarini, 2016). Different systems
(micelles, hydrogels, solid scaffolds) have been used to generate
GAMs capable of delivering a variety of gene transfer vectors.
Nonviral vectors were incorporated in GAMs by the groups of A.
L. Bertone, of W. Richter, and of M. Murphy* and also by Curtin
et al., Raftery et al., and Tierney et al. to carry PTH(1–34)
(collagen) (Backstrom et al., 2004), VEGF (collagen) (Geiger
et al., 2005), BMP-2 (collagen, nano-hydroxyapatite - nHA,
alginate, chondroitin sulfate) (Curtin et al., 2012; Loozen
et al., 2013; Nedorubova et al., 2022; Husteden et al., 2023),
BMP-2/VEGF (collagen, nHA, chitosan) (Curtin et al., 2015;
Raftery et al., 2017; Raftery et al., 2019; Walsh et al., 2021), BMP-
2/BMP-7 (collagen, nHA, chitosan) (Raftery et al., 2018), SOX9
(collagen, alginate) (Ledo et al., 2020), ephrinB2 (collagen, nHA)
(Tierney et al., 2013), and the stromal-derived factor 1 alpha
(SDF-1α) (collagen, nHA) (Power et al., 2022) to stimulate MSC
chondro-/osteogenesis and bone healing. GAMs formulating
rAAV vectors carrying TGF-β (pluronics, carbon dots - CDs,
poly (ε-caprolactone) - PCL) (Rey-Rico et al., 2017b; Meng et al.,
2020; Venkatesan et al., 2021), IGF-I (alginate) (Maihöfer et al.,
2021), and SOX9 (pluronics, PCL, CDs) (Rey-Rico et al., 2018;
Madry et al., 2020b; Urich et al., 2020; Venkatesan et al., 2020)
were also used by the group of M. Cucchiarini* to stimulate MSC
chondrogenesis, cartilage repair, and prevent OA. Interestingly,
GAM have been also tested by the groups of E. R. Balmayor*, of
M. Murphy*, and of D. Noël* to deliver RNAs, like for instance an
mRNA for BMP-2 (micro-macro biphasic calcium phosphate -
MBCP - granules, fibrin gel, collagen sponge, titanium implants)
(Tierney et al., 2013; Morille et al., 2016; Balmayor et al., 2017;
Zhang et al., 2019; Fayed et al., 2021; De La Vega et al., 2022) to
stimulate MSC osteogenesis and bone healing or siRNAs against
Runx2 (pluronics, collagen) (Raisin et al., 2017; Salvador et al.,
2022) to reduce MSC osteogenesis.

5.2 EVs and biomaterials

The use of MSC-derived EVs in combination with biomaterials
represent a future MSK tissue engineering strategy to influence and
facilitate local therapeutic release of EVs by means of their design and
chemical characteristics (Yan et al., 2020; Casanova et al., 2021; Zhang
et al., 2021). Nanofibrous substrates designed to immobilize EVs induce
the chondrogenic differentiation of BMMSCs as seen byCasanova et al.
(Casanova et al., 2021). Hydrogels containing MSC-derived EVs have
the ability to integrate cartilage ECM and to promoteMSC recruitment,
resulting in cartilage defect repair (Liu et al., 2017; Zhang et al., 2021).
The association of scaffolds with EVs andMSCs is also an alternative to
improve cartilage regeneration as reported by Heirani-Tabasi et al. and
by others (Heirani-Tabasi et al., 2021; Cho et al., 2023).

6 Discussion

The last 30 years of research in cartilage regeneration and its biology
have been marked by numerous and essential steps forward in the
technologies available to study and apply research aimed at joint
regeneration. The fact that women have been a vital part of this
effort, especially via work performed in interdisciplinary teams, is to
be noted, as evidenced by the large (although non-exhaustive) body of
literature cited here. It is critical for us to be at the forefront of research
in a field of particular interest to us as doctors, researchers, and women
(Alliston et al., 2020), but also as potential patients. If medicine has
taught us anything, one must not only view one component of what we
are trying to treat, but related components and how they all interact.

In the future, patients will benefit from a continuously maturing
collaborative approach, combining the best biological research with
robotics for biomaterial and scaffold development and printing. For
example, 3D printing has already shown its relevance in creating
patient-specific scaffolds based on defect evaluation via radiological
evaluation, allowing for near-perfect replication and correction.
Automated production systems for cells and cell-derived products
synergize to provide relevant cells for these scaffolds in a cost
effective manner. This personalized approach allows for a more
precise correction and treatment, and better outcomes. Additionally,
with potential for the continuous growth of the industry due to the
increased incidence of OA in the general population, therapy
production will be further facilitated and standardized; therefore,
more patients will be able to benefit from a better access to
improved technologies to treat OA.

We have also seen that OA and MSK research has diverged to
genetic engineering, secretomes, and viral vectors. These approaches
based on basic biological principles common to cells show promise,
notably when combined with the application of stem cells. In vitro
studies on MSC secretomes and EVs by the groups of G. Lisignoli*, of
D. Noël*, and of G. J. V. M. van Osch* (van Buul et al., 2012;
Manferdini et al., 2020; Ruiz et al., 2020) show promise in terms of
anti-inflammatory properties and anti-catabolic effects dependent on
the inflammatory status of chondrocytes and synoviocytes. These
approaches allow for a more direct cellular-based approach to
managing the degeneration leading to OA and the potential for
slowing down the catabolic mechanisms leading to its advancement.

The future of MSK regeneration is based on a patient-centered
approach. OA is a multimodal disease, with multiple factors leading
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to its development and progression that can be targeted to delay or
even prevent its progression. The ideal scenario for future patients is
a multimodal approach from personalized lifestyle modifications
informed by polygenic risk scores that characterize an individual
genetic risk profile as reported by the group of F. Cicuttini* (Lacaze
et al., 2022) to the study of the degenerative and inflammatory state
of the joint down to a cellular level to counteract destructive
processes and even stimulate regeneration. Combining these
different levels of therapeutic impact, one could potentially
modulate the disease progression by targeting therapies to
different patient phenotype in OA. There remain some challenges
regarding how to make such an approach applicable, but once a
multimodal method can be applied, the results may be revolutionary
by targeting therapies to those most likely to benefit.

Research in the MSK field has seen many breakthroughs in the last
decades, with women being at the forefront of several, especially in the
field of biology. Yet, a significant disparity remains due to the generally
imbalanced ratio of women to men in the field as can be noted on the
representation of women in the membership (Figure 2A), in the Board
of Directors (Figure 2B), and as recipients of Lifetime/Career Awards
(Figure 2C) of various MSK and cell therapy/tissue regeneration
societies (data generously provided by the European Society for
Sports Traumatology, Knee Surgery and Arthroscopy - ESSKA -
https://www.esska.org, the ICRS with a woman current President -
EK*, the International Society for Cell and Gene Therapy - ISCT -
https://www.isctglobal.org/home, the Osteoarthritis Research Society
International - OARSI - https://www.oarsi.org, the Orthopaedic
Research Society - ORS - https://www.ors.org with a woman as Past

President and a woman as Incoming President, and the Tissue
Engineering and Regenerative Medicine International Society -
TERMIS - https://www.termis.org with a woman as Incoming
President). In particular, the societies associated to clinical
orthopedics (i.e., ESSKA and ICRS) are still male-dominated. Since a
majority of the 2023 Board of Directors of the societies presented here
are well balanced, we can speculate that this token of involvement and
recognition of women in the field will translate in a better gender
balance of Lifetime/Career awards in the future. The current under-
representation of women in MSK research, in particular when it
involves orthopedics, has a number of reasons. These include the
lack of female role models and mentors in the academic world and
in industry is one aspect that makes it more challenging for women to
see themselves pursuing careers in MSK research. Moreover, gender
prejudice and discriminationmightmake it more difficult for women to
excel in both academia and industry, particularly in male-dominated
specialties such as orthopedic surgery.

Orthopedics remains the least diversified medical specialty,
with the highest prevalence of men. In fact, only 7.4% and 7% of
orthopedic surgeons in the United States and UK, respectively,
are female (Ahmed and Hamilton, 2021; Peterman et al., 2022).
This disparity also applies in academic and research fields, with
only 20% of women assistant professors, 15% of women associate
professors, and 9% of women full professors in orthopedics for
instance (Gerull et al., 2020), although their impact should not be
overlooked. Women are also under-represented in the
biomedical engineering field (Barabino et al., 2020) which is
key for MSK research and translation. It is therefore crucial to

FIGURE 2
Representation of Women in MSK Societies. (A): Society Membership; (B) Board of Directors; (C) Recipients of Lifetime/Career Awards; n/a: not
available).
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take action to address these underlying problems. This can
include campaigns to eliminate gender bias and discrimination
as well as initiatives to raise the profile of female researchers and
clinicians in academics and associated industries, such as the
“Women in ESSKA” initiative that (sic) “wants to promote
ESSKA’s educational and research activities among female
orthopedic surgeons during and after their specialization”
(https://www.esska.org/page/WomeninESSKA) or the “ORS
Women’s Leadership Forum” that (sic) “will mentor, foster,
encourage and inspire women at the start and throughout
their careers in orthopedic research, and will assist women in
obtaining leadership roles in orthopedic-related organizations”
(https://www.ors.org/womens-leadership-forum).

Hope now lies in the upcoming generation of doctors and
researchers, with medical and scientific Universities today having
a higher prevalence of female students than males (Barabino et al.,
2020; Ahmed and Hamilton, 2021). Moreover, gender should no
longer be considered as binary. Hopefully, these developments will
have a “butterfly” effect to increase diversity and to continue to open
doors for women and minorities in the field of MSK research,
including stem cell research. These new and upcoming colleagues
also have the advantage of having grown up in parallel to all the new
technologies of today. They have a different approach and mindset
to search for opportunities, bringing a breath of fresh air and
innovation to biomedical research in general. Although these
newcomers may have suffered from a lack of mentorship and
role models, we hope that this paper will have highlighted
women who can illustrate the part and that it will inspire them
to become the leaders of tomorrow in this disciplinary field
(Barabino et al., 2020).
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