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Over the last century, the clinical management of severe skin burns significantly progressed with the development
of burn care units, topical antimicrobials, resuscitation methods, early eschar excision surgeries, and skin grafts.
Despite these considerable advances, the present treatment of severe burns remains burdensome, and patients are
highly susceptible to skin engraftment failure, infections, organ dysfunction, and hypertrophic scarring. Recent
researches have focused on mesenchymal stromal cell (MSC) therapy and hold great promises for tissue repair, as
reported in several animal studies and clinical cases. In the present review, we will provide an up-to-date outlook
of the pathophysiology of severe skin burns, clinical treatment modalities and current limitations. We will then
focus on MSCs and their potential in the burn wound healing both in in vitro and in vivo studies. A specific
attention will be paid to the cell preconditioning approach, as a means of improving the MSC efficacy in the
treatment of major skin burns. In particular, we will debate how several preconditioning cues would modulate the
MSC properties to better match up with the burn pathophysiology in the course of the cell therapy. Finally, we
will discuss the clinical interest and feasibility of a MSC-based therapy in comparison to their paracrine deriv-
atives, including microvesicles and conditioned media for the treatment of major skin burn injuries.

Keywords: major skin burn injuries and pathophysiology, mesenchymal stromal cells, cell preconditioning,
clinical use

Thermal burns can lead to the disruption of the cuta-
neous barrier and leave the body unprotected against the

surrounding environment. In 2018, the World Health Orga-
nization* recorded 180,000 burn-related deaths per year with
a high percentage of cases occurring in low- and middle-
income countries [1,2]. Although the incidence, the severity,
and the mortality rate following a burn injury have decreased
[2], the management of major skin burns still remains chal-
lenging in terms of surgery and scar formation [3–5].

This review presents the limits of the classical manage-
ment of severe skin burns and tackles interesting therapeutic
alternatives using cell-based therapies and improved by cell
preconditioning strategies.

Severe Thermal Burns

Burn pathophysiology and healing

Burn is a complex trauma whose severity depends on
wound size, depth, and location. But other factors can

influence the burn severity, including age, burn localiza-
tion, and other related injuries. Burn is one of the most
severe traumas, as it impairs the normal wound healing
process and leads to irreversible functional and esthetical
damages.

Burn pathophysiology. Depending on its etiology, inten-
sity, and duration, the burn injury can trigger protein dena-
turation and cell membrane integrity loss at the local level,
leading to a so-called coagulative necrosis [6,7]. Clinically,
the burn wound can be dissected into three severity areas
from the center of the wound to the periphery [8]. The center
of the wound is called the coagulation zone, as the tissue is
irreversibly lost. Surrounding the coagulation zone, the zone
of stasis is poorly perfused and can rapidly turn into necrosis.
The most external zone is referred to as the hyperemia zone,
where vasodilation is governed by an acute and local in-
flammatory reaction. To avoid ischemia-driven burn wound
progression, wound care management and fluid resuscitation
are critical.

Necrotic burn tissues release large amounts of damage
associated molecular patterns (DAMPs), including toxic
lipid-protein complexes [9], extracellular matrix (ECM)
fragments, and cytoplasmic cell content. DAMPs activate
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the inflammasome through the Toll-like receptors (TLRs)/
nuclear factor-kappa B (NFkB) pathway and initiate the
systemic production of large amounts of inflammatory
molecules [10–13]. Along with this systemic inflammatory
response, the increased capillary permeability results in
edema formation in the interstitial space and hypovolemia.

Simultaneously, increased systemic vascular resistance con-
tributes to reduce the cardiac output and leads to a so-called
burn shock (Fig. 1). After about 3 days, hypermetabolism
becomes established in burn patients, as a normal body re-
sponse to cope with dehydration and hypovolemia-induced
heat loss. Hypermetabolism is driven by catecholamines,

FIG. 1. Pathophysiology of full thickness burn injuries. This schematic summarizes the main biological events fol-
lowing a full-thickness burn injury, according to the Jackson’s pathophysiological model [8]. At local level, in the zone of
coagulation necrosis (1), the burn injury causes full destructions of all skin layers. Burn toxins, such as lipid–protein
complexes, tissue necrosis, and ischemia, all contribute to trigger an intense and long-lasting inflammatory response that
spreads to the surrounding stasis zones. Massive release of inflammatory mediators (2) (such as catecholamines, cyto-
kines, and ROS) causes pain, as well as increased vascular dilation, permeability, and resistance (3). As a short-term
result, extravascular fluids accumulate to form interstitial edemas and skin blisters or leak out of the body, contributing to
patient’s dehydration, hypothermia, and tissue hypoxia (4). Immune suppression is also thought to develop as a long-term
consequence of chronic inflammation, leaving the body defenseless against pathogens and bacteria (5) and causing sepsis.
After few days, massive systemic metabolic and inflammatory dysregulations alter the normal wound healing process
leading to hypertrophic scars. Altogether, these pathological changes can lead to a lethal multiple organ failure. ROS,
reactive oxygen species.
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stress hormones, and inflammatory mediators and triggers
glycolysis, lipolysis, and proteolysis. After a severe burn
trauma, hypermetabolism and hyperinflammation usually
persist for years [10], leading to lean body mass break-
down, wound healing impairment, insulin resistance, im-
mune suppression, organ dysfunction, and hypertrophic
scarring (Fig. 1).

Burn wound healing. Cutaneous injuries initiate a cascade
of events that tightly regulate the wound healing, according
to three distinct but overlapping phases known as inflam-
mation, proliferation, and remodeling (Fig. 2) [14,15]. The
dysregulation of one of these phases might alter the normal
repair process, causing epithelialization delays and patho-
logical scars. Accordingly, several studies from the Eming’s
group highlighted the key role of the inflammation phase in
wound healing duration and fibrosis emergence [16,17].

Traumatic burn injuries are characterized by an extreme
and persistent inflammatory response driven by catechol-
amines, cortisol, and inflammatory cytokines (Fig. 2) [10].
Although today the factors influencing the burn wound
healing have not been clearly identified, the exaggerated
inflammatory response is thought to be paramount in burn
pathogenesis. Catecholamine driven inflammation is indeed
known to slow down the epithelialization process and the
granulation tissue formation. In particular, long-lasting ac-
tivity of beta-adrenergic agonists has been shown to trigger
both neutrophil persistence and keratinocyte migration im-
pairment during wound healing [18,19]. Hyperinflammation
is also thought to alter the TH1/TH2 ratio, thus contribut-
ing to both immune suppression and fibrogenic responses
in burn patients [20–23]. According to this paradigm, serum
expression levels of early interleukin 1b (IL-1b), decorin,

FIG. 2. Role of MSC in normal and burn wound healing. This schematic describes the three phases of wound healing both
in normal and burn contexts and gives an overview of the possible therapeutic actions of MSCs. While the inflammatory
phase resolves within days in a normal context, it persists for months and is more intense after burns. MSCs may help
decrease inflammatory responses by secreting anti-inflammatory molecules, such as IL-1RA, TGF-b1, IDO, or TSG-6. They
may also contribute to bacterial clearance through antimicrobial peptide synthesis or phagocytosis promotion. Wound
closure, neoangiogenesis, and matrix deposition normally happen during the proliferation phase of wound healing. After
burns however, these events are considerably slowed down and less effective. During this phase, trophic compounds
secreted by MSCs may support wound closure, angiogenesis, and matrix deposition. The remodeling phase also differs
between normal and burn wound healing. While myofibroblasts undergo apoptosis under normal conditions, they persist
after burn, inducing excessive ECM deposition and hypercontractility. MSCs may thus aid tissue remodeling and scar
mitigation through the expression of MMPs or anti-scarring molecules. ECM, extracellular matrix; IDO, indoleamine 2,3-
dioxygenase; IL, interleukin; MMPs, matrix metalloproteinases; MSC, mesenchymal stromal cell; TGF-b1, transforming
growth factor beta 1; TSG-6, TNF-stimulated gene/protein 6.
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and late transforming growth factor beta 1 (TGF-b1) were
shown to predict the appearance of hypertrophic scars in
burn patients [24].

In addition to the excessive inflammatory response, many
other factors are believed to play a pivotal role in the de-
velopment of hypertrophic scars, including myofibroblasts
[25], mechanical stresses [26], and delayed wound healing
[27–29]. However, whether these factors are the origins or
the consequences of burn fibrogenesis still remains a matter
of debate today.

Current treatments and limitations

To return to a normal wound healing process, several
treatments are required to treat patients with major burn
injuries [30]. They include heavy surgical procedures, in-
tensive cares, wound dressing nursing, adapted nutrition,
and sterile confinement (Table 1).

The surgical management of severe burns begins with the
removal of necrotic tissues. This step is essential to clean up
the wound from toxic cues and bacteria, curb local inflam-
mation, and limit mechanical stresses. This surgery is fol-
lowed by the covering of the wound bed using different kinds
of grafts (ie, skin autografts, allografts, and skin substitutes)
applied according to diverse surgical methods [4]. When do-
nor sites are insufficient, alternatives to skin autografts can be
used to reform the cutaneous barrier and limit the infectious
ingress. In these particular cases, a two-stage procedure is

carried out to restore the dermal compartment using collage-
nous matrices such as Integra� [31] or cadaveric allografts
[32] and the epidermal compartment using cultured epidermal
autografts (CEAs) [33,34]. These alternatives provide a per-
manent covering of the burn wound and improve patient
survival rates [35–37]. But the use of CEAs is still limited by a
variable epidermal grafting efficiency [35,38–41], as a con-
sequence of the immune and metabolic state of the patient, the
immaturity of the newly formed dermal–epidermal junction
(DEJ) resulting in skin blistering [42], the poor vascularization
of the wound bed, and the high susceptibility to infections
[30]. These obstacles therefore result in delayed wound repair
and might contribute to the lack of functionality of the re-
paired tissue [34,43].

Given that infections are responsible in some cases of
skin graft failure and sepsis, they have become a major
therapeutic target. Several treatments such as topical anti-
microbials or systemic antibiotics are highly effective to
combat infections. Accordingly, clinicians most often agree
to deliver topical antimicrobials until reaching full wound
closure [44]. However, systematic practice is under debate,
because of the growing bacterial drug resistance and the
negative effect of certain drugs on wound closure. A chal-
lenging research area therefore seeks to develop novel an-
tibacterial treatments for burn applications [45].

Resuscitation is one of the other major key points in the
stabilization of patients with major burns. Large-volume
resuscitation fluids contain crystalloids (ie, Ringer lactate)

Table 1. Global Burn Treatments and Management

Therapeutic
targeting Strategies Targeted effect

Loss of cutaneous
barrier

Wound coverage and grafting Wound closure with auto or allogeneic skin graft,
Skin substitutes

MSC therapy Wound closure

Burn wound
conversion

Negative pressure therapy Improving blood flow and tissue survival
Bradykinin antagonist Limiting vasodilatation and permeability

Infection Escharectomy Restraining bacterial colonization
Topical antibiotics (silver sulfadiazine) Protecting the wound from pathogens
Systemic antibiotics Protecting the whole body from pathogens

Hyperinflammation Escharectomy Reducing the release of inflammatory cues
Vitamin supplementation Limiting oxidative stress
Fluid resuscitation (crystalloids and colloids) Fighting hypovolemia
Nitric oxide inhibitors (methylene blue) Reducing vascular permeability

Hypermetabolism Thermoregulation Increasing room temperature to 33�C
Enteral nutrition Preserving intestinal mucosal integrity

and decreasing stress hormone release
Carbohydrate and fat intake monitoring Limiting hyperglycemia and improving immune

function
Protein supplementation Reducing lean body mass drop
Vitamin supplementation Improving wound healing and immune function
Hormonal and pharmacological therapy

(insulin, oxandrolone, testosterone,
ketoconazole, IGF-1, propranolol)

Improving wound healing and limiting insulin
resistance

Hypertrophic
scarring

Surgery and grafting Diminishing wound contraction
Mechanical treatment (pressure therapy,

splinting, physiotherapy)
Improving scar appearance

Anti-inflammatory treatment Limiting collagen production

The data shown in the table are extracted and summarized from previous reviews [13,30,46,48,51,126,127].
IGF-1, insulin-like growth factor-1; MSC, mesenchymal stromal cell.
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and are sometimes supplemented with colloids (such as
plasma or albumin). Although necessary to compensate for
hypovolemia and burn shock, the excessive use of resusci-
tation fluids has been correlated with coagulative, pulmonary,
and immunologic side effects [46]. Moreover, resuscitation
fluids often induce hypernatremia, a well-known inhibitor of
skin graft take [47]. Therefore, there is still a dreadful need
for resuscitation fluid volume and composition optimizations.

Hyperinflammation plays a major role in burn pathophys-
iology. However, it is unclear whether reducing it would slow
down the disease progression in humans. To investigate this
possibility, several treatment modalities have been designed
such as TLR antagonists, oxidative stress inhibitors, or in-
flammatory cytokine blockades [13,46] and are under current
investigation in phase I clinical trials.

Hypermetabolism also is a major compound of the burn
pathophysiology, as it disturbs the normal wound healing
process and hormonal balance [48]. Anabolic agents, such
as propranolol, have been evaluated in clinical trials and
were shown to improve the burn wound healing [49] and
reduce hypertrophic scarring [50]. However, their systematic
use does not seem appropriate due to unwanted side effects.

To counteract hypertrophic scarring, the main treatments
remain surgery and negative pressure therapy [51]. The
direct targeting of the fibrogenic TGF-b1 signaling path-
way has been early abandoned, as TGF-b1 knocked-out mice
are known to develop systemic autoimmune disorders result-
ing in early death [52]. Other anti-scarring strategies have been
investigated, such as reactive oxygen species (ROS) inhibition
[53], vascular endothelial growth factor (VEGF) blockade
[54], or peroxisome proliferator-activated receptor-g activation
[55,56], but none of them has led to a definitive solution.

Despite the broad range of strategies developed to treat
severe burns, there still remain today many hurdles to be
addressed, such as the healing time and the scar formation.
However, novel cell-based therapies seem to hold great
promises for the future of the burn wound management.

Mesenchymal Stromal Cell–Based Therapy

Mesenchymal stromal cells (MSCs) are fibroblastic cells
that were originally found in the bone marrow [57] and later
isolated from many other tissue sources [58] such as the
gingiva [59], the adipose tissue [60], or the perinatal tissues
[61]. MSCs are defined as plastic adherent cells, expressing
specific surface markers (CD73+, CD90+, CD105+, CD34-,
CD45-, CD11b-, CD14-, CD19-, CD79a-, HLA-DR-) and
able to differentiate into osteocytes, chondrocytes, and adi-
pocytes in vitro [62].

These cells have drawn much attention over the past decades
due to their ability for tissue repair and immune tolerance. The
use of MSCs in cell therapy was initially based on the hypothesis
of their in situ differentiation to regenerate injured tissues. But it
gradually became apparent that MSCs hold their therapeutic
efficacy from their ability to modulate the surrounding cell re-
sponses through paracrine mechanisms [63]. Accordingly,
MSCs have been shown to secrete a wide range of bioactive
molecules, including cytokines, chemokines, growth factors,
and lipid mediators [64]. In recent years, MSC-based therapies
have therefore emerged as novel interesting strategies to improve
the wound healing of a wide range of cutaneous diseases [65]
and, more particularly, skin burn injuries [66].

MSCs in skin wound healing

MSCs have been reported to contribute to the wound heal-
ing resolution and scar mitigation by impacting on inflamma-
tion, bacterial clearance, reepithelialization, vascularization,
granulation tissue formation, and ECM remodeling (Fig. 2).

The inflammation phase of wound healing can be regulated
by MSCs due to their known immunomodulatory properties.
Zhang et al. have indeed demonstrated that MSCs are able to
modulate the inflammatory milieu and promote wound repair
as a consequence of the polarization of macrophages from a
pro-inflammatory to an anti-inflammatory phenotype [67].
Other studies have shown that MSCs can secrete tumor ne-
crosis factor alpha (TNF-a)-stimulated gene/protein 6 (TSG-
6), an anti-inflammatory cue known to impede TNF-a-driven
inflammation and fibrosis during wound healing [68,69].

Angiogenesis and wound closure can also be controlled
by MSCs to avoid chronic wound emergence. Accordingly,
several studies have demonstrated that MSCs are able to
stimulate acute wound closure [70] and neovascularization
[71] through the paracrine release of growth factors in vivo.
This paracrine action was shown to enhance keratinocyte
and dermal fibroblast migration, as well as endothelial tu-
bule formation using MSC-conditioned medium or MSC-
derived microvesicles in vitro [70,72–74].

Matrix remodeling and scar mitigation can also be or-
chestrated by MSCs in the final stages of wound repair.
The use of MSCs or their derived microvesicles/exosomes
resulted in a significant reduction of a-smooth muscle actin
(a-SMA), collagen expression, and a transition to a low TGF-
b1/TGF-b3 ratio in acute wound animal models [69,75].
These antifibrotic activities are possibly mediated by TSG-6
[69], mi-RNAs inhibiting TGF-b2/SMAD2 pathway [75], or
matrix metalloproteinases (MMPs) and tissue inhibitors of
metalloproteinases (TIMPs) balance [76,77].

MSCs in burn wound healing

Preclinical studies. As outlined in Table 2, MSCs have
shown their beneficial effect on each stage of the burn
wound healing in many animal models of burn [66].

In response to hyperinflammation, MSCs have been
shown to secrete modulatory factors that limit immune cell
accumulation and inflammatory cytokine production at both
local [78,79] and systemic levels [80]. In particular, MSC-
derived TSG-6 has been reported to reduce the burn-induced
inflammation through P38 and c-Jun N-terminal kinase (JNK)
signaling pathways [81]. Likewise, MiR-181c contained in
MSC-secreted exosomes appeared to downregulate the TLR4-
mediated inflammation in burn rats [82]. In addition to play on
inflammatory pathways, MSCs administered at the burn site
were shown to guide macrophage polarization toward a M2
reparative phenotype [79,83].

After burn, the proliferation phase of wound healing is
significantly slowed down. Interestingly, MSCs [84] or their
derived microvesicles [73,85] have been shown to counteract
this effect by accelerating wound closure and neovascular-
ization [78,86]. Accordingly, MSC administration resulted in
angiopoietin (ANG)-1/2 gene upregulation in several animal
models of third degree burn [84,87].

Burn injuries often result in hypertrophic scars, because
of a dysregulated matrix remodeling. MSCs were shown to
mitigate this burn-induced scarring through the regulation of
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excessive collagen deposition and fibrotic growth factor
expression (ie, TGF-b1) [78,79]. In addition to their regu-
latory effect on matrix deposition, some investigators have
even claimed that MSCs could have a favorable impact on
adnexal tissue repair, especially on hair follicles and seba-
ceous glands [88,89].

Regarding infection and sepsis, MSCs can exert a bac-
tericidal activity through direct and indirect mechanisms.
They can secrete antimicrobial peptides and proteins such as
LL-37 [90] or stimulate macrophage phagocytosis through
phosphoinositide 3-kinase activation and prostaglandin E2
(PGE2) production [91].

Limitations of the current preclinical models. Despite major
beneficial outcomes, MSC treatment strategies used in pre-
clinical burn models remain difficult to apply in clinical
practice. As reported in Table 2, the burn eschar is rarely
removed in preclinical studies, while it is the standard prac-
tice in the clinics. Likewise, skin grafts remain poorly used in
research studies, while they are essential for patients. Re-
cently, a few studies have although come closer to the clinical
practice, using both MSCs and dermal grafts to treat burns
[92]. This combination was shown to reduce fibrosis and
improve skin engraftment and angiogenesis in early time

post-treatment [93,94]. Another concern is the time at which
MSCs are administered. Research studies often use them
immediately after burn induction, while this scenario ap-
pears clinically barely possible, especially in case of au-
tologous treatments. Early treatment could yet be of real
interest to limit burn-induced inflammation and necrosis
spreading. However, this option implies that allogeneic
MSCs or MSC-derived products are already banked and
readily available. To reach this goal, time, dose, and mode
of MSC administration will still have to be optimized to
significantly improve the clinical treatment of burns [95].

Clinical case reports

Current clinical case studies. In 2005, Rasulov et al. were
the first to report the successful use of MSCs and skin grafts
to treat a 45-year-old woman suffering from a 30% total
body surface area (TBSA) full-thickness burn [96]. Since
then, only a few other similar cases have been reported in
the literature (Table 3). MSC therapy was generally used in
combination with a surgical treatment allowing the removal
of the eschar and the application of an autograft. In these
clinical studies, the MSC therapy was strikingly shown to
attenuate pain [96] and scarring [97,98] and promote skin
engraftment [96,99] through granulation tissue formation

Table 3. Summary of the Clinical Cases Involving Mesenchymal Stromal Cell-Based

Therapy to Treat Severe Thermal Burn Injuries

%TBSAa

Number
of patients,
gender, age

MSC therapy

ReferencesSource Dose Treatment protocol Results

30 1, Female,
45 years old

BM-MSC,
allogeneic

20,000–30,000
cells/cm2

Topical application
of cells after
escharectomy and
4 days later
application of
autografts
combined with
cells (on autograft
and donor site)

Rapid formation of
granulation tissue,
neoangiogenesis,
and better graft take

[96]

30 1, Male,
26 years old

BM-MSC,
allogeneic

10,000
cells/cm2

Cell spraying in fibrin
matrix after
escharectomy,
35 days later
application of
an expanded
autologous skin
graft with cells

Better granulation,
tissue formation,
reepithelialization
from the wound
margins, and
angiogenesis

[99]

60 and 40 2, Female,
22 years old,
male, 41
years old

BM-MSC,
autologous

Not mentioned Covering of the
wound with a cell
loaded collagen
sponge

Wound closure
achieved between 2
and 4 weeks, better
scar appearance

[97]

From
10 to 25

60, Female and
male, from
15 to 50
years old

BM-MSC,
autologous
and UC-MSC
allogeneic

100,000
cells/cm2

Topical or
subcutaneous
injections of cells at
day 2 and 10 after
escharectomy

Better wound healing,
hospitalization time
shortage

[98]

80 1, Male, 19
years old

BM-MSC,
autologous

2,100,000
cells/mL

Subcutaneous cell
injections after scar
excision and
autologous skin
grafting

Less skin graft
contraction, less
scar complications

[100]

a%TBSA only refers to the extent of the third-degree burns and might not encompass the entire burn surface area of the patient.
TBSA, total body surface area.
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[96] and angiogenesis [99]. A recent study involving 60
patients reported a better wound healing rate in groups
treated with both skin autografts and MSCs compared to
skin autografts alone [98]. However, conversely to preclin-
ical data, only a single study outlined the regulatory effect of
MSCs on inflammatory cell infiltration in burn patients [97].
MSCs were also used at a late time point during the re-
modeling phase of the burn wound healing in an attempt to
treat hypertrophic scars and reduce skin contraction [100].

MSC source, dose, and timing of administration. Although
no study has clearly identified the best tissue source of MSCs,
the bone marrow remains so far the preferred harvest location
in burn clinical studies (Table 3). Yet, current clinical data
indicate that other cell sources could be of equal efficacy such
as umbilical cord tissues [98]. Regarding the applied cell
doses, no consensus has been found yet, and great variabilities
between cell administration protocols can be noticed from a
study to another. Of interest, no dose has been reported to
trigger deleterious effects, and the average applied dose in the
current clinical reports is around 20,000 MSCs/cm2.

To our knowledge, the MSC-based therapy has never
been used in the acute phase of the burn wound healing.
Instead, most clinical cases reported the use of MSCs during
the proliferation phase of the burn wound healing and more
rarely during its remodeling phase [100]. Moreover, the
application of MSCs in clinics has always been performed in
combination with a skin graft. However, it is currently un-
known whether the MSC-based therapy is more likely to
work in concert with cultured epithelial autografts, allograft
cell sheets, or keratinocyte cell suspensions compared to
other current treatments [41,101,102].

Toward a clinical use of MSC-based therapies

Cell-based therapies: autologous or allogeneic source?

Although several clinical studies have reported no adverse ef-
fects in the use of autologous and allogeneic MSC (Table 3), it is
still hard to conclude on the best donor source option, due to the
very few number of patients involved in these trials. Autologous
cells are advantageous in terms of immune tolerance. However,
as they come from a pathological environment they may hold a
substandard therapeutic efficacy. Moreover, their host well-
acceptance may possibly trigger a higher risk of tumorigen-
esis, especially after a cultivation step in vitro [103]. In terms
of clinical production, autologous cell sources are more
expansive due to patient-dependent production times and
lack of immediate availability.

On the contrary, the use of allogeneic cells is supported
by their intrinsic ability to bypass the immune surveillance
due to low major histocompatibility complex (MHC) and
costimulatory molecule expression levels [104,105]. How-
ever, studies have shown that bank cryopreserved MSCs
exhibit less efficient immunomodulatory properties after
thawing [106–108], although a functional recovery is ob-
served after 1 day in vitro culture [106]. Moreover, path-
ological inflammatory contexts are likely to induce the
MHC expression in allogeneic MSCs, making them a
possible target of the host immune system [109]. Thus,
intramuscular injections of allogeneic MSCs were shown
to stimulate anti-donor IgG formation [110]. In addition,
these cells may not present tumorigenic risks as they can
rapidly be eliminated from the body.

From a clinical point of view, there is no clear picture re-
garding the use of allogeneic MSCs. Both disappointing and
encouraging results were indeed reported in phase-III clinical
trials [111]. These discrepancies obviously highlight the key role
of cell preparation and administration protocols that vary a lot
from a trial to another. Recently, the success of a phase III clinical
trial involving allogeneic MSC for the treatment of Fistular
Crohn’s disease was indeed partly due to a local high-dose ad-
ministration of cultured-amplified MSC after thawing [112].

In the context of early burn wound management, the use of
banked, cryopreserved allogeneic MSC is the only possible
option. However, when considering the treatment of later burn
phases, the use of autologous MSC becomes an alternative, as
production times are no longer a constrain. At present, the
autologous cell source may hold the best efficiency compared
to the allogeneic source [113]. But further preclinical and
clinical studies are needed to clarify the impact of the immune
response on MSC efficacy in the context of severe burn.

Cell-derived product therapy. Due to the fact that MSCs
mainly operate through their paracrine secretions, derivative
secretory products, such as conditioned media or microvesicles,
have drawn much attention in the recent years [114]. The main
advantage of using these secretory products is to avoid the use of
cells that may induce a risk of tumorigenesis, immunogenicity,
embolus formation, and pathogen transmission. Moreover,
these products might be easier to bring to the market, as they can
be framed under the current pharmaceutical regulations. How-
ever, secretory product standardization might be difficult to set
in place, due to the variability observed among various cell
sources and donors. Accordingly, MSC-derived secretomes
originating from unrelated tissue sources were recently shown
to contain different profiles of neurotrophic and neurogenic
factors [115]. In other studies, MSC secretory products origi-
nating from different donors were reported to bear disparate
immunomodulatory effects [108,116]. At last, cell-derived
MSC products are known to be less efficient than MSCs
themselves, especially in inflammatory disease models [117].

Cell preconditioning. Cell-based and cell-derived product
therapies both face critical issues that limit their wide clinical
use. While cell-based therapies have to cope with interdonor
variability and cell exhaustion, cell-derived products lack ef-
fectiveness. Preconditioning, also known as priming or licens-
ing, is a strategy used to improve the response of a tissue or cell
population to a particular environment. This approach was first
reported in the literature in 1986 by Reimer et al. who suc-
cessfully improved the myocardium resilience to ischemia by
exposing it to repeated short cycles of hypoxia [118,119].

In the context of cell therapy, the preconditioning approach
can help prepare MSCs to a pathological environment by stim-
ulating protective and survival pathways. Preconditioning can
also help design customized cell therapies through the promotion
of specific signaling pathways, targeting tissue homeostasis
dysfunction or disease [120]. In fact, a recent report showed that
the reduced immunomodulatory functions of MSCs induced by
a long-term exposure to palmitate, a known factor found in
type 2 diabetes environment, could be rescued by a
short preconditioning of these cells [121]. Our laboratory has
thus showed that the immune suppression property of MSC-
derived products is strongly improved using priming
method [122]. Interestingly, other investigators have also
shown that the preconditioning approach could also serve to
minimize interdonor variability [109].
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MSC Preconditioning Approach in Severe Burn
Cell Therapy

As described by Caplan and Correa in 2011, wound
healing is a biological process in which the preconditioning
paradigm is at stake. Upon injury, resident and recruited
cells get primed by mechanical and biological stressors that
initiate the wound repair process [123]. Similarly, the burn
wound gives rise to different priming stressors at early,
middle, and late stages, altering cell behaviors at both local
and systemic levels. Therefore, the treatment of burns must
be adapted to the stage of the disease to reach high efficacy.
In this section, we will review the preconditioning modali-
ties that may potentiate the MSC therapy at each stage of the
burn trauma. Hence, we will sequentially dissect the burn
pathophysiology and give an overview of the priming mo-
dalities susceptible to improve MSC therapeutic efficacy
(summary in Fig. 3 and Table 4).

MSC preconditioning strategy to tackle
early-stage burn responses

Early pathophysiological responses to major burns are
characterized by infections, hyperinflammatory responses,
and hypermetabolism. These features prevent the burn wound
from healing spontaneously and appear to be governed by

an accumulation of ROS/reactive nitrogen species (RNS)
[124,125], stress hormones, including catecholamines [126–
128], and free fatty acids (FFAs) [48]. In this section, we will
emphasize the potential of mild inflammatory primings to
augment MSC therapeutic effects during early burns.

Fighting wound infections. To prevent postburn infections,
mild inflammatory primings are interesting strategies, as
they promote direct and indirect MSC antimicrobial activi-
ties. To our current knowledge, MSCs are able to synthesize
four different antimicrobial peptides, including LL-37, beta-
defensin 2, hepcidin, and lipocalin-2 [90]. In an ex vivo
model of lung injury, lipopolysaccharide (LPS) was reported
to promote the MSC-derived synthesis of LL-37 [129].
Recent observations in our laboratory also showed that low-
dose IL-1b primed MSCs could secrete high levels of fi-
broblast growth factor (FGF)-7 (unpublished data), a factor
known to promote peripheral blood mononuclear cell
(PBMC) survival and phagocytic activity [130].

Mitigating the hyperinflammatory response. After traumatic
burn injuries, DAMP, pathogen-associated molecular pattern
(PAMP), and stress hormones activate the JNK signaling
pathway through G-protein coupled receptors and initiate
an inflammatory cascade [127]. To attenuate this pathological
process, inflammation-related cues have been the most
commonly used priming agents [131–134]. Mild inflam-
matory licensings are indeed known to make MSCs secrete a

FIG. 3. Adapting the preconditioning to the burn pathophysiology. This schematic presents, on the upper part, the main
pathological stressors involved in the burn pathophysiology. During early burn responses, IL-1b, TNF-a, IL-6, Cortisol,
FFA, or epinephrine is massively released at local and systemic levels. In middle and late burn responses, a stress signal
switch occurs with an augmentation of TGF-b1, IL-2, IL-4, IL-13, and VEGF, all of which are implicated in immune
suppression and hypertrophic scar formation. The lower part of this schematic shows the effect of several preconditioning
modalities on MSC actions (in red) and paracrine activity (in blue). As shown, mild inflammatory primings can improve
MSC therapy during the early and middle stages of the burn pathophysiology. Hypoxia is rather to be used at the middle
stages. At last, strong immunomodulatory priming can serve during the late stages. Interestingly, burn stress signals that are
expressed during the course of the burn pathophysiology often correspond to the preconditioning agents used to improve
MSC therapy. FFA, free fatty acid; IL, interleukin; TGF-b1, transforming growth factor beta 1; TNF-a, tumor necrosis factor
alpha; VEGF, vascular endothelial growth factor.
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wide range of anti-inflammatory molecules such as TGF-b1,
IDO (indoleamine 2,3-dioxygenase), TSG-6, hepatocyte
growth factor (HGF), galectins, and semaphorins
[131,135–138]. Recently, a study showed that TNF-a and
LPS primed MSCs could alleviate the inflammatory reac-
tion in a scald burn rat model, as highlighted by reduced
systemic levels of TNF-a, IL-1b, and IL-6 [81]. In another
study, the neurogenic and pro-inflammatory Substance P,
known to be released in high amounts after burn [139], was
shown to induce the secretion of TGF-b1 from primed
MSCs and improve the ability of these cells to suppress CD4+

T cell activities [140]. Inflammatory primings can also have
an indirect impact on immune cell functions. Accordingly,
inflammation-licensed MSCs are able to synthesize high
levels of PGE2 and Lipoxin A4, two lipid inducers of effer-
ocytosis and phagocytosis [117,141]. In another study, Song
et al. successfully polarized macrophages toward a M2-like
phenotype using IL-1b stimulated MSCs and observed a
diminution of TNF-a synthesis and an increase in IL-10 re-
lease in response to LPS [142].

Apart from inflammatory cytokines, stress hormones can
also promote antioxidative and anti-inflammatory secre-
tions in MSCs. In a recent study, epinephrine was shown to
activate MSC immunomodulation when cocultured with LPS-
treated macrophages by regulating key inflammatory cyto-
kines, including TNF-a, IL-1b, IL-1RA, and IL-10 [143]. This
effect was confirmed in a rat model of lung injury, where
primed MSCs reduced inflammation, edema formation, and
hemorrhage. Exendin-4, a glucagon-like peptide-1 homolog,
was shown to trigger the synthesis and the activity of anti-
oxidative enzymes such as glutathione, glutathione peroxidase,
and superoxide dismutase in hydrogen peroxide-intoxicated
MSC [144]. In the same study, Exendin-4 stimulation re-
duced the production of malondialdehyde, a lipid peroxida-
tion end product found in burns.

Other studies have also reported a better ability of
MSCs to mitigate inflammatory processes after a hypoxic
or ROS preconditioning. Accordingly, mild hypoxia [145]
and hydrogen peroxide [68] licensed MSCs were able to
suppress the proliferation of activated PBMCs, in a TSG-6
dependent mechanism [68]. In accordance with these in
vitro observations, the use of a conditioned medium from
hypoxic MSCs was reported to reduce the amount of in-
flammatory and oxidative stress mediators, including IL-
17, interferon-g (IFN-g), inducible nitric oxide synthase
(iNOS), cyclooxygenase 2 (COX-2), and JNK in an ex-
perimental autoimmune encephalomyelitis mouse model
[146].

Suppressing hypermetabolism. To cope with hypothermia,
a catabolic switch is often observed in burn patients, which in
turn stimulates the process of thermogenesis. This metabolic
change leads to excessive glycolysis, proteolysis, and lipol-
ysis and contributes to lean body mass breakdown [128]. As
a consequence, elevated plasma levels of triglycerides and
FFAs are found in both animals and humans with major
burns [48,127,147]. Saturated and mono-unsaturated FFAs
are known to support TLR4 inflammation [148], contribute
to insulin resistance [48] and, therefore, impair the normal
wound healing process. Inflammation-licensed MSCs have
been shown to bridle metabolic dysregulations. In particular,
TNF-a and LPS preconditioned MSCs were able to mini-
mize the body temperature drop early after injury in a scald

burn rat model [81]. MSCs were also shown to contribute to
insulin sensitization through the blockade of the NLRP3
(NOD-like receptor protein 3) and the IRS-1 (insulin receptor
substrate 1) [149] by secreting STC-1 (stanniocalcin-1) [150],
an antioxidative and anti-inflammatory protein, known to be
upregulated after a 3D-spheroid culture [151] or an apoptotic
signal [152] preconditioning of MSCs.

MSC preconditioning strategy to combat
middle-stage burn responses

As discussed earlier in this review, the treatment of deep
and extensive burns requires a surgical act that includes burn
eschar excision to impede necrosis progression and skin
grafting to recreate a functional barrier. However, due to the
dysregulated metabolic and inflammatory state of burn pa-
tients, skin donor sites and burn wounds struggle to heal
rapidly. As a result, comorbidities and pathological scars
develop due to delayed reepithelialization [153]. Herein, we
will provide an overview of the licensing modalities that
could drive MSCs toward pro-healing and reparative activ-
ities to improve the middle-stage burn wound healing. In
particular, we will emphasize the contribution of both the
hypoxic and inflammatory primings in MSC-mediated
wound closure, angiogenesis, and tissue protection.

Fighting tissue viability loss, ischemic injury, and necrosis. Re-
tardation in burn eschar removal is known to promote the
extension of the coagulation necrosis to the surrounding stasis
zone [154]. This pathological progression therefore results in
greater tissue viability loss, ischemic injuries, and necrosis.
Hypoxia is an interesting priming to combat these tissue al-
terations as it stimulates the MSC synthesis of pro-survival
factors such as VEGF, insulin-like growth factor-1 (IGF-1),
FGF-2, and HGF [70,155]. Several animal models of re-
perfusion injury or wound healing have underlined the benefit
of hypoxia-preconditioned MSCs in terms of tissue survival
and neovascularization using direct administration of cells
[156], conditioned media [70], or microvesicles [157]. From a
mechanistic point of view, hypoxia would activate pro-
survival and pro-angiogenic pathways in MSCs, including
Akt and c-Met [156].

As for hypoxia, inflammatory licensings can also activate
pro-survival and trophic factors in MSCs. Under low stimu-
lation levels of IL-1b and TNF-a stimulation, for example,
MSCs can release high levels of VEGF and HGF and activate
the pro-survival extracellular signal-regulated kinase (ERK)1/2
signaling pathway in airway epithelial cells [158]. Priming
MSC with IL-1b, TNF-a, and NO could also enhance secretion
of pro-angiogenic mediators and promote tissue survival in
model of radiation-induced intestinal injury [159].

Improving donor site healing. Slow- or nonhealing skin
donor sites are major curbs in the management of severe
burns, as they lead to increased occurrence of infections and
prolonged hospitalization times. In an attempt to improve the
repair of these donor sites, the MSC preconditioning strategy
can serve to trigger the secretion of MSC-derived trophic
factors accelerating local wound closure.

Inflammatory-primed MSCs are known to accelerate cu-
taneous wound closure. In a recent study, Broekman et al.
successfully improved the proliferation and migration of
epithelial cells through an epidermal growth factor receptor
(EGFR) dependent mechanism using IL-1b and TNF-a
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licensed MSCs [158]. Licensing MSCs with S100A8/A9, a
calcium-binding DAMP protein known to activate the TLR4
signaling, were also shown to accelerate wound closure in a
full-thickness skin excisional murine model through IL-32,
MMP-27, and complement component 3a (C3a) upregulation
[160]. In other studies, hypoxia caused MSCs to release pro-
migratory factors stimulating the migration of epithelial cells
in vitro [70,156] and accelerating the closure of excisional
wounds in vivo [145]. Lipid mediators such as all-trans re-
tinoic acid [161] and arachidonic acid (AA) [162] have also
been reported to promote MSC-driven tissue repair and ac-
celeration of wound closure in excisional skin wound mouse
models. In particular, the AA priming of MSCs was shown to
regulate fibronectin degradation and wound closure through
the activation of the mTORC2 (mechanistic target of rapa-
mycin complex 2) pathway and the expression of MT3
(membrane-type-3)-MMP [162].

Promoting skin engraftment. Although many studies have
reported the beneficial effect of primed MSCs on wound
closure, very little is known about their ability to help skin
graft take in large tissue defects. Based on clinical obser-
vations, both functional blood supply and mature DEJ would
be needed to prevent skin graft viability loss and blistering.
Therefore, MSC licensings are expected to trigger pro-
angiogenic and DEJ remodeling responses to positively
impact on skin graft take.

Hypoxia-preconditioned MSCs were shown to secrete
high protein levels of VEGF and ANG-1 and induced better
endothelial tubule formation in vitro [163,164]. Once in-
jected with endothelial cells, hypoxic MSCs were reported
to promote graft viability and vascularization and to reduce
contraction in a model of full-thickness skin excision [93].
In a very different setting, exosomes from hypoxic MSCs
were shown to promote fat graft survival through enhanced
angiogenesis and reduced inflammation [165].

Inflammation-related primings may also influence MSC-
mediated DEJ remodeling. Both TGF-b1 and TNF-a li-
censed MSCs improved type-VII collagen deposition and
mitigated skin blistering in a model of recessive epi-
dermolysis bullosa [166]. Other studies reported that IFN-g
[131] and IL-1b [138] preconditioned MSCs secrete high
levels of TGF-b1, a growth factor known to play pivotal
roles in DEJ formation [167–170].

MSC preconditioning strategy to bypass
late-stage burn responses

After the hyperinflammatory reaction, the pathophysiology
of severe burns evolves toward immune suppression and hy-
pertrophic scarring [154,171]. As previously mentioned in this
review, this pathological switch partly ensues from a systemic
dysregulated expression of the TLR downstream mediators
[13], which include IL-10, IL-4, IL-13, granulocyte-
macrophage colony-stimulating factor (GM-CSF), IL-1b,
IL-2, and IFN-g [10,172]. The expression levels of several
growth factors, such as TGF-b1 and VEGF, are also increased
in the late stages of the burn trauma, leading to hypertrophic
scars [173,174]. In this complex pathological system, the use
of licensed MSCs is expected to reverse the immune sup-
pression and mitigate the scarring response. Herein, a specific
attention will be drawn to hypoxic and strong inflammatory
MSC preconditionings.

Reactivating the immune system. Myeloid-derived sup-
pressor cells (MDSCs) are a heterogeneous cell population
initially discovered in tumors and later described in burns
[175]. These cells play significant roles in acquired immune
system suppression and angiogenesis promotion [176,177].
The mobilization of MDSC is driven by VEGF and GM-
CSF and leads to the release of Arginase, RNS, and ROS, all
of which are implicated in inflammatory processes, bacterial
clearance activity, and immune dysfunction [177]. Cancer
research studies have shown that immune system reactiva-
tion could be accomplished by suppressing MDSC activities
either through induced differentiation into mature myeloid
cells or mobilization and expansion arrest [177]. Although
the role of MDSC on postburn immune suppression has not
been studied in depth like in cancer, one might assume that
inhibiting these cells in a late burn context could improve
immune reactivity. To our knowledge, the impact of the
MSC preconditioning on MDSCs has scarcely been studied.
What we know at best is that tumor-educated MSCs can
promote MDSC growth and activity [178]. But an emerging
body of evidences is now suggesting that under specific
priming conditions MSCs could repress MDSC activities
and reactivate the immune system.

TLR agonists are known to regulate MSC immunomod-
ulatory activities. They can thus trigger antagonistic in-
flammatory responses in MSCs, depending on the priming
dose or on the presence of other priming agents. Lately, our
team showed that MSCs can rescue LPS-intoxicated T cell
survival, after a priming with both LPS and pamidronate,
but not with LPS alone [179]. High-dose LPS and IFN-g
preconditioned MSCs were recently shown to prevent LPS-
activated B cells from secreting IL-10, a well-known re-
pressor of TH1 cell subset activation [180]. The LPS priming
also triggered MSC derived synthesis of IL-8 and macro-
phage migration inhibitory factor, two promoting factors of
polymorphonuclear neutrophil survival, migration, and
function [181].

In addition to their direct contribution to MSC-driven
immune stimulation, TLR agonists are likely to influence
interactions between MSCs and MDSC. Accordingly, the
preconditioning of MSCs with CpG oligodeoxynucleotide
[182] or poly(I:C) [183] was shown to induce the production
of IL-12, a putative MDSC differentiation inducer, along
with vitamin A metabolites and vitamin D3 [184]. TLR
agonists therefore constitute privileged priming cues to di-
rect MSC immunomodulatory functions. However, because
their mechanisms of action still remain poorly understood,
conflicting data have emerged in the literature [185,186],
highlighting the complexity of these priming cues and the
need for further investigations especially regarding the dose.

Analogously to TLR agonists, ROS primings can modify
MSC immunomodulatory properties depending on the other
priming cues expressed in the local milieu. Recently, Tsoyi
et al. showed that carbon monoxide (CO) and AA primed
MSC release high levels of pro-inflammatory prostaglan-
dins, while CO and DHA (docosahexaenoic acid) primed
MSC synthesize anti-inflammatory resolvins [187]. As a
consequence of lipid catabolism and thermogenesis, circu-
lating saturated FAs, such as AA, are found in excess in the
early stage of the burn pathophysiology and persist over
time [147]. CO-primed MSC might therefore be noxious if
used at the onset of the burn pathology, as they could sustain
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or worsen the hyperinflammatory response. If used later,
however, they might help reactivate the immune system.
These interesting data therefore demonstrate the importance
of carefully choosing a preconditioning that is adapted to the
stage of disease pathophysiology.

Aside from TLR agonists and ROS, other factors have
been reported to modulate the effect of MSC on the immune
system. For example, Zhou et al. highlighted the signifi-
cance of the MSC-to-T cell ratio as it can trigger both
stimulation and inhibition of T cell expansion in vitro. Ac-
cordingly, MSCs can stimulate the proliferation of activated
CD4 and CD8 T cell subsets at low MSC-to-T cell ratios,
while they are inhibitory at higher ratios [188].

Harnessing the development of hypertrophic scars. While
hypertrophic scars are common postburn sequelae, their
pathogenesis remains largely unknown. Clinical and ex-
perimental observations have led to the hypothesis that
hypertrophic scars would stem from aberrant outgrowth
and survival of myofibroblasts, imbalanced ECM deposi-
tion [189–191], and overactivated TGF-b signaling [191].
MDSCs have also been designated as putative targets in
scarring processes. In addition to secrete pro-fibrotic ROS
and TGF-b1, these cells are known to suppress the immune
system activity through MyD88 [192], a regulator protein
found in excess in hypertrophic scars [13]. Given the actual
need for an antiscarring treatment and the scarcity of candi-
dates for it, the MSC therapy has surfaced as a possible so-
lution. Here again, the success of such a therapy must be
considered within the scope of the licensing approach, since
MSCs can both be pro- and antifibrotic, depending on their
microenvironment [193].

Hypoxia is known to trigger antifibrotic mechanisms in
MSCs, involving both leptins [194] and HIF-1a (hypoxia-
inducible factor 1-alpha) [195], through collagen and a-
SMA downregulation. In particular, hypoxic MSCs were
shown to decrease the expression level of connective tissue
growth factor, a downstream mediator of fibrosis, and in-
crease the expression of HGF, a well-known TGF-b1 sig-
naling inhibitor [196,197].

Recently, a study highlighted the central role of the tumor-
suppressive gene p53 in the antiscarring effect of MSC [198].
In particular, p53-silenced MSCs were shown to promote
fibroblast proliferation through iNOS production and myo-
fibroblast conversion. The tumor-suppressive gene p53 is
known to be involved in growth arrest, apoptosis, and
antiangiogenesis, as it triggers the synthesis of key mole-
cules such as insulin-like growth factor-binding protein 3
(IGFBP-3) and 14-3-3s [199]. To improve MSC antiscarring
effects, the activation of the tumor-suppressive gene p53 could
therefore be an interesting option. This activation can be
achieved through the use of stress signal primings, including
radiation, hypoxia, or deoxyribonucleic acid damage [199].

Excessive vascularization is known to contribute to scar
formation [173]. Promoting MSC antiangiogenic responses
using well-defined licensing cues could therefore be a way
to mitigate the emergence of hypertrophic scars after burns.
As previously mentioned, the priming effect of inflamma-
tory signals on MSCs can have an impact on angiogenesis
but it appears to be highly dose dependent. As a result, the
inflammatory priming of MSCs has both been shown to
support the release of pro-angiogenic mediators at low doses
[159] and suppress the endothelial cell migration, tubule

formation, and in vivo vasculoprotection at higher doses
[200–202]. These conflicting data can be explained by the
release of TIMP-1, a well-known angiogenesis antagonist,
differentially expressed under inflammatory licensing con-
ditions. TIMP-1 is indeed overexpressed in MSCs primed
with elevated doses of pro-inflammatory mediators [200],
while it remains at a baseline expression level in low dose
priming conditions [137].

Interestingly, TGF-b1-primed MSCs have been also re-
cently shown to release high protein levels of IGFBP-3
[203], a growth factor known to block VEGF and MMP-9
pathways in in vitro and in vivo models of angiogenesis and
vessel sprouting [204,205]. Therefore, the TGF-b1 licensing
of MSCs could be used to block MDSC activity, as it relies
on JAK2 (janus kinase 2)/STAT3 (signal transducer and
activator of transcription 3) and VEGF signaling [184].

Toward the Clinical Use of MSC
Preconditionings for Burn Treatment

Presently, there are only five reported clinical cases
where MSC-based therapies were used to treat major burns
(Table 3). In the majority of them, MSCs were applied
during the middle stage of the burn disease progression, when
reepithelialization, tissue survival, and skin graft take needed
to be promoted. As reported in this review, hypoxic and mild
inflammatory preconditionings are therefore appealing can-
didates to improve the MSC therapy at this specific patho-
logical stage. However, these priming modalities might also
be of interest to treat early burn stages to help mitigate hy-
permetabolism, hyperinflammation, and wound infections.

Although preconditioning approaches open up new thera-
peutic avenues in the field of cell therapy, a particular at-
tention has to be drawn on preconditioning development and
pathological context of use. In this review, we indeed re-
ported that distinct priming doses and environments could
promote antagonistic therapeutic outcomes. In that way, we
specifically highlighted inflammatory and hypoxic/ROS pre-
conditionings, but this might apply for many other licensing
modalities. Therefore, there still is a need for thorough and
comprehensive studies ensuring the benefit of a specific
priming protocol for a chosen disease or pathological event.

As reported in this review, a standardized priming dose and
priming duration need to be found for the clinical translation
of the preconditioning approach. At the cell therapy level,
other questions will also have to be answered such as the dose
and the administration route of primed MSC or primed MSC-
derived products. Preclinical studies will therefore be re-
quired to explore the best therapeutical options. Although
many questions remain to be answered, the clinical pre-
conditioning approach can be attainable. Indeed, in terms of
safety, Guess et al. reported no sign of toxicity, tumorigen-
esis, or biodistribution of IFN-g-primed MSC [206]. Few
clinical studies have already been performed to evaluate the
safety and efficacy of primed MSC. Hypoxic allogeneic
MSCs were, for example, shown to improve nonischemic
cardiomyopathy, as highlighted by a strengthening of the left
ventricular ejection fraction in patients [207].

Conclusion and Perspectives

Because of a complex pathophysiology, the treatment
of deep and extensive burns remains a challenge today.
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However, the MSC therapy holds great promises in terms
of safety, adaptability, and feasibility. Depending on the
pathological target and the stage of the disease progres-
sion, the MSC potency can further be improved using well-
characterized preconditioning protocols. Now that preclinical
studies have demonstrated the real interest of this approach to
improve the burn wound healing, the proof of safety and
efficacy remains to be done in major burn patients.
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111. Galipeau J and L Sensébé. (2018). Mesenchymal stromal
cells: clinical challenges and therapeutic opportunities.
Cell Stem Cell 22:824–833.

112. Panés J, D Garcı́a-Olmo, G Van Assche, JF Colombel, W
Reinisch, DC Baumgart, A Dignass, M Nachury, M Fer-
rante, et al. (2018). Long-term efficacy and safety of stem
cell therapy (Cx601) for complex perianal fistulas in pa-
tients with Crohn’s disease. Gastroenterology 154:1334–
1342.e4.

113. Berglund AK, LA Fortier, DF Antczak and LV Schnabel.
(2017). Immunoprivileged no more: measuring the im-
munogenicity of allogeneic adult mesenchymal stem cells.
Stem Cell Res Ther 8:288.

114. Vizoso FJ, N Eiro, S Cid, J Schneider and R Perez-
Fernandez. (2017). Mesenchymal stem cell secretome:
toward cell-free therapeutic strategies in regenerative
medicine. Int J Mol Sci 18:E1852.

115. Pires AO, B Mendes-Pinheiro, FG Teixeira, SI Anjo, S
Ribeiro-Samy, ED Gomes, SC Serra, NA Silva, B Man-
adas, N Sousa and AJ Salgado. (2016). Unveiling the
differences of secretome of human bone marrow mesen-
chymal stem cells, adipose tissue-derived stem cells, and
human umbilical cord perivascular cells: a proteomic
analysis. Stem Cells Dev 25:1073–1083.

116. Paladino FV, LR Sardinha, CA Piccinato and AC Gold-
berg. (2017). Intrinsic variability present in Wharton’s
jelly mesenchymal stem cells and T cell responses may
impact cell therapy. Stem Cells Int 2017:8492797.

117. Németh K, A Leelahavanichkul, PS Yuen, B Mayer, A
Parmelee, K Doi, PG Robey, K Leelahavanichkul, BH
Koller, et al. (2009). Bone marrow stromal cells attenuate
sepsis via prostaglandin E(2)-dependent reprogramming
of host macrophages to increase their interleukin-10 pro-
duction. Nat Med 15:42–49.

118. Reimer KA, CE Murry, I Yamasawa, ML Hill and RB
Jennings. (1986). Four brief periods of myocardial is-
chemia cause no cumulative ATP loss or necrosis. Am J
Physiol Heart Circ Physiol 251:H1306–H1315.

MSC PRECONDITIONING FOR SEVERE BURN TREATMENT 1401

D
ow

nl
oa

de
d 

by
 D

is
c 

In
se

rm
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

4/
25

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



119. Murry CE, RB Jennings and KA Reimer. (1986). Pre-
conditioning with ischemia: a delay of lethal cell injury in
ischemic myocardium. Circulation 74:1124–1136.

120. Hu C and L Li. (2018). Preconditioning influences mes-
enchymal stem cell properties in vitro and in vivo. J Cell
Mol Med 22:1428–1442.

121. Boland L, AJ Burand, AJ Brown, D Boyt, VA Lira and JA
Ankrum. (2018). IFN-g and TNF-a pre-licensing protects
mesenchymal stromal cells from the pro-inflammatory
effects of palmitate. Mol Ther 26:860–873.

122. Giuliani M, A Bennaceur-Griscelli, A Nanbakhsh, N
Oudrhiri, S Chouaib, B Azzarone, A Durrbach and JJ
Lataillade. (2014). TLR ligands stimulation protects MSC
from NK killing. Stem Cells 32:290–300.

123. Caplan AI and D Correa. (2011). The MSC: an injury
drugstore. Cell Stem Cell 9:11–15.
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