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Introduction: Osteoarthritis (OA) is a degenerative disease characterized by

cartilage degradation and subchondral bone alterations. This disease

represents a global public health problem whose prevalence is rapidly

growing with the increasing aging of the population. With the discovery of

mesenchymal stem cells (MSC) as possible therapeutic agents, their potential

for repairing cartilage damage in OA is under investigation.

Areas covered: Characterization of MSCs and their functional properties are

mentioned with an insight into their trophic function and secretory profile.

We present a special focus on the types of extracellular vesicles (EVs) that

are produced by MSCs and their role in the paracrine activity of MSCs. We

then discuss the therapeutic approaches that have been evaluated in

pre-clinical models of OA and the results coming out from the clinical trials

in patients with OA.

Expert opinion: MSC-based therapy seems a promising approach for the

treatment of patients with OA. Further research is still needed to demonstrate

their efficacy in clinical trials using controlled, prospective studies. However,

the emergence of MSC-derived EVs as possible therapeutic agents could be

an alternative to cell-based therapy.

Keywords: extracellular vesicles, mesenchymal stem cells, osteoarthritis, regenerative medicine,

trophic factors

1. Introduction

Diseases affecting the cartilage have an increasing prevalence as people aged or in
younger athletes following sport-related injuries. This is related to the poor intrinsic
capability of cartilage to regenerate because of the absence of vascularization within
the tissue. As the most common form of chronic joint diseases, osteoarthritis (OA)
represents a significant public health issue associated with a high economic burden.
OA affects more than 20 and 39 million people in United States and Europe,
respectively, but these numbers are predicted to double until 2020, notably through
the increase in average life expectancy and the obesity epidemic [1]. The disease has a
huge impact on the patients’ quality of life not only related to dysfunction and pain
but also to sleep disorder and depression, which further increase the economic
burden [2]. Conventional treatments do not cure the disease, at best slightly delay
its progression and more generally reduce inflammation and pain. Total joint
replacement is the end point surgical option, which is generally successful to
alleviate pain and recover motility but represents a substantial risk of infection or
thrombosis. Since the early 90s, cellular therapies based on autologous chondrocyte
implantation (ACI) have proved some efficacy to repair lesions following cartilage
injuries induced by traumas or early OA [3]. In recent years, the interest of mesen-
chymal stem/stromal cells (MSC) has been evaluated to circumvent the drawbacks
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associated with chondrocyte recovery and expansion. Here, we
provide an overview of the current knowledge on MSC char-
acteristics and properties as well as their potential therapeutic
role in preclinical models of OA and in the clinics.

2. Physiopathology and current treatments of
OA

OA is a complex disease, which is associated with risk factors
such as age, obesity, genetic predisposition, joint instability,
or trauma. Pain is the predominant symptom with stiffness,
and is associated with loss of function of the pathological
joint, leading to a drastic reduction in quality of life. Although
OA develops over several years, the absence of innervation
within the cartilage is associated with delayed symptoms
onset, leading to failure in early detection and clinical man-
agement of the disease [4]. OA primarily affects knee and hip
joints, and less frequently non-weight-bearing joints, such as
hands or shoulders. The disease is characterized by articular
cartilage degradation and osteophyte formation but it also
affects other joint tissues, leading to subchondral bone sclero-
sis and synovial inflammation. Actually while cartilage has
long been thought to be responsible for the disease, recent
evidence indicates that subchondral bone and synovial tissue
are involved in the onset and progression of OA [5-8].
At the cellular level, pathological changes within the joint

affect the chondrocytes, which are the cells responsible for
the synthesis and repair of the cartilaginous extracellular
matrix (ECM) [9]. These alterations result in a decrease in
chondrocyte viability and induce a shift in the balance
between anabolic and catabolic activity in favor of the synthe-
sis of matrix metalloproteinases (MMP) and aggrecanases and
cartilage degradation [10]. The altered chondrocytes, which
cannot properly respond to mechanical stimulation and syn-
thesize adequate levels of ECM components, enter a vicious
cycle in which ECM breakdown dominates synthesis [11].
Current treatments, which are primarily symptomatic,

focus on pain relief and inflammatory modulation but do

not impact the progressive degeneration of joint tissues [12].
Measures to unload damaged joints by exercise or weight
reduction may have a positive effect on pain but NSAIDs or
corticoids are largely used as effective treatments of inflamma-
tory flares of OA. When these strategies fail to alleviate pain,
surgery is indicated. Osteochondral grafts (mosaicplasty) and
microfracture can relieve pain but do not lead to long-term
efficacy while joint replacement is effective when pain is asso-
ciated with disability and radiological deterioration [13]. The
efficacy of biotherapies targeting TNFa, IL1b, or IL6 has
also been evaluated, but the results are still disappoint-
ing [14,15]. Finally, tissue-engineering approaches using ACI
in association or not with matrix (MACI) are routinely
applied for the regenerative treatment of injured cartilage
and in early OA cartilage lesions [16]. The main effect is how-
ever to delay OA but long-term studies in patients with
advanced OA are missing. The development of new therapeu-
tic strategies able to prevent the disease progression and regen-
erate large cartilage lesions are therefore of paramount
importance and MSC-based therapies may be of high interest.

3. Characteristics and properties of MSCs

MSCs are adult stem cells that can be isolated from bone
marrow (BM-MSCs), adipose tissue (ASCs), umbilical cord,
Wharton’s jelly, synovium, and others [17]. The claim that
all MSCs from all tissues are pericytes residing in perivascular
location in post-natal organs has been recently discussed [18].
Nevertheless, BM-MSC and ASCs are the two main sources
for therapeutic use, with a growing interest for umbilical
cord MSCs, which are easy to isolate [17]. The definition for
MSCs as proposed by the International Society for Cellular
Therapy (ISCT) relies on three criteria: i) their adherence to
plastic, ii) their phenotype CD105+, CD73+, CD90+ and
CD45-, CD34-, CD14- or CD11b-, CD79a- or CD19-,
HLA-DR-, and iii) their capacity to differentiate into osteo-
blasts, adipocytes, and chondrocytes [19]. Of interest, the con-
cept and definition of a MSC have been recently reviewed [20].

Besides their differentiation potential, MSCs express
enzymes and secrete a large number of trophic factors, includ-
ing growth factors, cytokines, chemokines, which participate
to the paracrine activity of these cells [21]. MSCs exert pro-
angiogenic activity by acting as pericyte-like cells to support
the new vasculature and by secreting factors, such as VEGF,
platelet-derived growth factor (PDGF), fibroblast growth
factor 2 (bFGF), IGF-1, hepatocyte growth factor (HGF),
or placental growth factor (PIGF). These cells display anti-
apoptotic function. Together with VEGF, bFGF, HGF, and
IGF-1, the secretion of stanniocalcin-1 or TGF-b contributes
to prevent cells from apoptosis [22]. The production of HGF,
bFGF, and adrenomedullin by MSCs is also involved in the
modulation of fibrosis. HGF might be an important mediator
in the anti-fibrotic process by acting on the balance between
anti-fibrotic MMPs and tissue inhibitor of MMPs (TIMPs),
which play an important role in fibrosis resolution. MSCs

Article highlights.

. Mesenchymal stem cells (MSC) possess functional
properties that are of interest for cartilage regeneration
in osteoarthritis (OA).

. Extracellular vesicles released by MSCs are promising
new tools for cell-free therapeutic applications.

. Efficacy of MSCs to protect against cartilage
degradation has been demonstrated after intra-articular
injection in several preclinical models of OA.

. MSC-based therapy has proven safety and tolerability in
several clinical trials in patients with knee OA.

. Cartilage repair or protection after MSC injection has
still to be demonstrated in large cohorts of patients with
OA in controlled, prospective studies.

This box summarizes key points contained in the article.
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are partly resistant to oxidative stress and secrete potent
anti-oxidant molecules, namely heme oxygenase (HO)-1 and
erythropoietin (EPO). These factors can modulate the
production of anti-oxidant molecules in injured tissues, such
as superoxide dismutase (SOD) or glutathione peroxidase
(GSH-Px) [23].

Finally, MSCs exert anti-inflammatory activity, through
the expression of indoleamine 2,3-dioxygenase (IDO), and
the secretion of several molecules among which prostaglandin
(PG)E2, tumor necrosis factor-inducible gene (TSG)-6, inter-
leukin (IL)-6, and HLA-G5 are the main mediators (for a
review, see [24]). MSCs can impact on the proliferation, differ-
entiation, and function of most effector cells of both innate
and adaptive immunity. The extent of the immunomodula-
tory function of MSCs can however differ between samples
according to the individual, the species, the tissue source,
the culture conditions, or the activation status and requires
restimulation in culture after freezing preservation procedures.
Recommendations for standardization of the assays used to
assess the immunoregulatory properties of MSCs have been
proposed by the ISCT [25]. Consensus on guidelines was
obtained for evaluating the immunosuppressive function of
MSCs on purified responder cells instead of immune cell
populations and interrogating the IDO response as part of
an in vitro licensing assay. These recommendations applied
to human MSCs. In summary, many of the paracrine
functions of MSCs may be of therapeutic interest for reducing
cartilage degradation in patients with OA.

4. Role of extracellular vesicles released by
MSCs

In recent years, the emergence of the role of extracellular
vesicles (EVs) as a new way for cell-to-cell communication
has rapidly gained much attention. All types of cells release
EVs that can interact with other cells in the close environment
and transfer functional biomolecules on long distance. EVs
are secreted structures surrounded by a phospholipid bilayer
and are present in body fluids. There exist different types
which can be classified according to their size, composition,
and biogenesis [26]. The three major types described are
exosomes, microparticles, and apoptotic bodies. Exosomes
are EVs with a size of approximately 80 -- 150 nm that derive
from the endosomal compartment, where membrane invagi-
nates and forms intraluminal vesicles in multivesicular bodies
(MVB). Exosomes are then constitutively secreted after fusion
of MVBs with the plasma membrane and released in the
extracellular space [27]. Exosomes are characterized by
tetraspanin proteins (CD9, CD61, CD83) and proteins of
the endosomal sorting complex required for transport
(ESCRT) (Alix, Tsg101). EVs that are approximately
300 -- 600 nm in diameter are called microparticles (MP) or
microvesicles. They are secreted by budding of the cell
membrane after cell stimulation by a stress signal, such as
apoptosis, hypoxia, increase of calcium. MPs are characterized

by the expression of the membrane markers specific for the
cell from which they derive. Apoptotic bodies have a size
superior to 1000 nm and are induced during the late stage
of apoptosis as blebs of died cells. All EVs are enriched in
proteins, lipids, and nucleic acids (DNA, mRNA, miRNA,
tRNA) that can be delivered to recipient cells, thus contribut-
ing to intercellular communication [28]. Even though a selec-
tive enrichment of specific molecules into EVs has been
described, they display functions that mirror those of their
parental cell.

MSCs release EVs that are proposed to be important
mediators of the paracrine action in regenerative medicine.
The role of MP or exosomes secreted by MSCs is intensively
investigated in various animal models and encouraging
therapeutic effects have been reported, positioning EVs as a
potentially novel alternative to cell-based therapies [29].
However, to our knowledge, no literature exists on the possi-
ble role of MSC-derived EVs (MSC-EV) in OA. Only one
study reports that exosomes from IL1b-stimulated synovial
fibroblasts could induce OA changes in vitro and in ex vivo
models [30]. Since MSCs represent a sub-population of syno-
vial fibroblasts, it can be hypothesized that depending on
the environmental signals, the production of exosomes or
more generally EVs may be modulated and play a role in
the physiopathology of the disease. Nevertheless, MSC-EVs
possess functional characteristics that may be of high interest
in the treatment of OA.

MSC-EVs have been shown to exert an immunomodula-
tory effect [31]. MSC-EVs inhibit auto-reactive lymphocyte
proliferation, and serve as vehicles for tolerogenic components
by induction of regulatory T cells [32,33]. Another study
reports that the immunosuppressive effect of MSC-EVs is
not directly exerted on T lymphocytes but through the
interaction of MSC-EVs with macrophages. Upon interac-
tion, macrophages are induced toward an M2-like phenotype
secreting anti-inflammatory cytokines that provide the
environment for the generation of a regulatory T cell popula-
tion [34]. The effect of MSC-EVs has also been investigated on
B cells. An inhibitory effect both on B cell proliferation and
differentiation with a reduced secretion of immunoglobulins
has been described [35]. Although the reports on the immuno-
regulatory function of MSC-EVs are still scarce and poorly
documented, they argue for MSC-EVs as potent modulators
of the immune responses and inducers of peripheral tolerance.

The role of MSC-EVs has been largely investigated in
many in vivo models including myocardial infarction, brain,
lung, liver, and acute kidney injuries [29]. In a myocardial
infarction model, MSC-EVs protect cardiac tissue from ische-
mic injury by blood vessel formation, resulting in a significant
reduction of the infarct size [36]. In kidney injury, MSC-EVs
reduce apoptosis, oxidative stress, and fibrosis and induce
the recovery of renal function [37,38]. The anti-fibrotic effect
of MSC-EVs was also shown on liver by the reduction of
collagens I, III, and TGF-b1 expression and Smad2
phosphorylation [39]. In the hypoxia-induced pulmonary
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hypertension model, MSC-EVs suppress the hypoxic
pulmonary influx of macrophages and the induction of
pro-inflammatory mediators. They also suppress hyperproli-
ferative pathways including STAT-3 signaling induced by
hypoxia [40]. Finally, in a model of stroke in rats, MSC-EVs
contribute to tissue repair by the delivery of miR-133b that
enhances neurite outgrowth and functional recovery [41].
Indeed, even though the role of MSC-EVs has not been
addressed in osteoarticular diseases, the pro-regenerative,
anti-apoptotic, anti-fibrotic, and anti-inflammatory effects of
MSC-EVs as exemplified in the preclinical models described
above could justify the interest of using MSC-EVs in OA.
The large body of evidence that MSC-EVs exert similar
functions as the parental cells provides new perspectives for
their use in the treatment of OA.

5. MSCs-based tissue engineering for OA
treatment

MSCs have been largely used to develop innovative treat-
ments of bone and cartilage disorders including OA. MSCs
can either be used as chondroprogenitors to replace injured
cartilage in tissue engineering approaches or as regenerative
cells to stimulate cartilage repair by endogenous cells.
The ability of MSCs to differentiate into chondrocytes in

response to several chondrogenic signals such as TGF-b
superfamily activators and in combination with scaffolds has
been reviewed elsewhere [42,43]. MSCs can differentiate
in vitro into chondrocytes able to secrete the cartilage ECM
with properties close to native hyaline articular cartilage.
However, stability of the mature chondrocyte phenotype is
difficult to achieve while cells tend to undergo hypertrophic
differentiation. The source of MSCs is an important issue,
as several studies indicate that synovium-derived MSCs and
BM-MSCs have higher chondrogenic differentiation potential
than other MSC sources [44]. Synovium-derived MSCs differ-
entiate into chondrocytes, which exhibit enhanced expression
of specific markers (SOX9, Aggrecan and Collagen 11A1) and
higher capacity of proteoglycan synthesis [45]. Even among
MSC samples isolated from the same tissue source, there is a
vast heterogeneity in the capacity of the cell populations in
their trilineage potential [46]. This heterogeneity likely reflects
a decrease in the number of true stem cells in the sample.
However, in terms of functionality, no change in chondro-
genic potential can be related to age, environmental stresses,
or disease status [47-49]. A better characterization of homoge-
nous chondroprogenitor populations capable of efficient
chondrogenic differentiation is still lacking [50]. Much of the
tissue engineering approaches rely on the use of BM-MSCs
and develop combinations of cells with scaffolds and growth
factors able to support chondrogenic differentiation and
form fully functional hyaline articular cartilage. Such strate-
gies are frequently tested in small animal models of surgically
induced chondral or osteochondral defects and do not address
large defects associated with OA. However, large animal

models including sheeps and horses are required for modeling
the defects occurring in humans and evaluating the regenera-
tive capacity of MSC-based therapies. The average cartilage
thickness in humans is approximately 2.2 -- 2.5 mm while it
is 0.4 -- 1.7 mm in sheeps and 1.75 -- 2 mm in horses [51].
In the ovine model, which is anatomically similar to humans,
one study reports that implantation of autologous BM-MSCs
mixed with chitosan scaffold and TGF-b3 resulted in hyaline-
like cartilage filling the defects created in the internal groove
of the patella [52]. Pre-differentiation of BM-MSCs in a
collagen gel before implantation allowed better repair than
undifferentiated BM-MSC or untreated controls and the effi-
cacy was even enhanced when using triphasic constructs [53,54].
The horse is the large animal model with the highest similarity
to humans. BM-MSCs loaded on a biphasic sponge scaffold,
made of a chondroinductive acid gelatin-b-tricalcium phos-
phate (GT) layer and an osteoinductive basic GT underlying
layer containing BMP-2, were implanted in osteochondral
defects. Higher radiographic, macroscopic, and histological
scores were recorded with the BM-MSCs loaded on the
biphasic sponges [55]. These pre-clinical studies in large animal
models do not fulfill all the requirements for evaluating
MSC-based therapy for large OA lesions but still indicate
improvement of both clinical and functional scores with
defects filled with newly hyaline/fibrocartilage on the short
or middle term [51].

In the clinics, the proof-of-concept that cell-based therapy
could be efficient to restore cartilage function was given in
the 90s when Brittberg and collaborators used autologous
chondrocytes and demonstrated the efficacy of ACI [56]. Since
then, matrix-assisted ACI (MACI) based on different types of
scaffolds is in routine use and thousands of patients with
osteochondral lesions have been treated [16]. Long-term
efficacy of the technique is reported primarily on pain relief
and fibro/articular cartilage formation, which delays OA.
Importantly, some investigations using chondrocytes from
end-stage OA patients disclosed similar outcomes as chondro-
cytes from healthy subjects [57,58]. However, the issue of
chondrocyte dedifferentiation during culture as well as the
need for a more accessible source of cells, with higher expan-
sion potential, has prompted the studies on MSCs. The first
clinical trial on OA patients was performed in 2002 where
autologous BM-MSCs within a collagen gel were implanted
inside the cartilage lesions under a periosteal flap [59]. Both
control and BM-MSCs-implanted groups improved function-
ally but hyaline cartilage was observed only after addition of
BM-MSCs. The same group further reported safety and effec-
tiveness of MSC transplantation in the long term for cartilage
repair [60]. In addition when compared to ACI, MSC trans-
plantation was equally effective to relieve pain and to improve
the patient’s quality of life, independently of patient’s age.
Nevertheless, BM-MSC-based treatment appeared less
invasive and reduced both morbidity and operative costs [61].
Similar outcomes with improvement of OA clinical scores
were published in additional case reports using BM-MSCs
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in platelet-rich fibrin glue or collagen [62,63]. Finally, a recent
investigation comparing the implantation of matrix-induced
autologous BM-MSCs versus chondrocytes in 14 patients
described significantly better functional outcomes, better
knee injury, and OA outcome score (KOOS) and visual ana-
log scale score (VAS) with BM-MSCs than chondrocytes [64].
Indeed, although several studies indicate safety and efficacy of
MSC-based tissue engineering approaches, no product is
available for routine use. A clear demonstration of their inter-
est in larger cohorts of OA patients would be required before
they can be used in large-scale applications.

6. Scaffold-free MSC-based therapy in OA
patients

Beyond the capacity of MSCs to repair cartilage after chon-
drogenic differentiation and implantation in chondral lesions,
a growing body of evidence indicates that MSCs can stimulate
endogenous cartilage repair through their secretory function,
which can modulate local articular environment. Using
in vitro chondrocyte coculture models, a number of studies
reported that MSCs promote chondrocyte proliferation and
stimulate ECM synthesis [65-67]. Other reports described the
inhibitory effect of MSCs on chondrocyte differentia-
tion [68,69]. In our group, we showed that coculture of both
BM-MSCs and ASCs with primary chondrocytes isolated
from OA patients did not influence the expression of cartilage
markers, such as Sox9 or Aggrecan but significantly reduced
the expression of fibrotic and hypertrophic markers, which
are expressed by OA cartilage [70]. The anti-fibrotic effect of
ASCs was mainly associated with the secretion of HGF as
demonstrated using neutralizing antibodies that reverted the
therapeutic effect of ASCs. We also showed in this coculture
system that ASCs can decrease the camptothecin-induced
apoptotic death of chondrocytes. Apart from these properties,
MSCs can affect the secretion of inflammatory mediators by
chondrocytes and synovial cells that have been isolated from
the joints of OA patients. Down-regulation of IL-1b, IL-6,
and IL-8 was reported in both cell types and this effect was
related to the secretion of PGE2 by ASCs [71]. Similar effect
was observed in another study where the expression of
IL-1b, MMP-1, and MMP-13 was decreased in OA synovio-
cytes while in cartilage, IL1-RA was enhanced upon MSC
addition [72]. In addition, a number of factors identified in
the secretome of MSCs, namely TGF-b1, insulin growth
factor (IGF)1, thrombospondin (TSP)-2, and stromal-derived
factor (SDF)-1, have been shown to favor chondrogenesis
in vivo and may be of therapeutic interest for cartilage
regeneration [73].

The therapeutic effectiveness of a scaffold-free injection of
MSCs has now been validated in numerous pre-clinical
models. The first demonstration was published in 2003 by
Murphy and collaborators in a caprine model of OA induced
by resection of the anterior cruciate ligament and median
meniscectomy [74]. Injection of autologous BM-MSCs

resulted in regeneration of the medial meniscus, and reduc-
tion in osteophyte remodeling, subchondral sclerosis, and
articular cartilage degradation. Interest of MSC transplanta-
tion has been validated in other pre-clinical models of
OA [75]. Notably in the murine model of collagenase-induced
OA, a dramatic decrease in cartilage degradation, synovial
inflammation, and osteophyte formation was noticed [76].
These impressive results were not observed in the traumatic
model of destabilization of the medialmeniscus (DMM) or
in CIOA-induced mice with low synovial inflammation [77].
These findings strongly suggest that inflammation-driven
activation of ASCs is required for their protective and immu-
nosuppressive effect in experimental OA. Of note, a beneficial
effect of MSC injection was disclosed in horses with OA
induced arthroscopically in the middle carpal joint.
A significant improvement in PGE2 effusion in synovial fluid
was recorded while other parameters did not significantly
change [78]. When evaluated in these models, the survival of
exogenously injected MSCs was generally short. We previ-
ously reported that intra-articular injection of human ASCs
in immunocompromised mice resulted in maintenance of a
small percentage of the cells for at least 6 months [79]. This
survival was attributed to the fact that mice could not elicit
an adaptive immune response and to the quantity of
implanted ASCs, which was very high as compared to similar
studies. Nevertheless, when a lower number of human ASCs
was infused in immunocompetent naive mice or mice with
CIOA or autoimmune collagen-induced arthritis (CIA),
they survived few days. Survival of cells was independent of
the healthy or inflammatory environment induced by the dis-
ease status but dependent on the route of administration [80].

A number of clinical trials based on the injection of MSCs
or ASCs for OA treatment have been initiated or are under
way [75]. An updated list of undergoing clinical trials is avail-
able in the recent review by Pers and coauthors (Pers et al.,
in press). A case report has first described cartilage and menis-
cus growth by MRI, as well as increased range of motion and
decreased VAS score after autologous BM-MSC injection in a
patient with knee OA [81]. Preliminary studies on four or six
patients with knee OA reported improvement in pain and
function after injection of 8 -- 9� 106 to 20 -- 24� 106 autol-
ogous BM-MSCs [82,83]. In the first study, patient follow-up
at 5 years indicated degradation of the clinical parameters
but they were still better than at baseline [84]. Safety of BM-
MSC implantation was assessed in 227 patients and the
absence of tumor formation was reported [85]. In a retrospec-
tive study, where 2 � 106 infrapatellar fat pad-derived MSCs
were injected after combination with platelet-rich plasma
(PRP), significant reduction of pain as well as increase in
function as compared to baseline was reported in the
25 patients with knee OA enrolled [86]. VAS improvement
was significantly better in patients with OA of ICRS grade
3 than grade 4. The results were however not different from
the control group, in which the patients had undergone
arthroscopic debridement and PRP injection. At 26 months
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of follow-up, clinical improvement was still significant [87].
Another report on 12 patients who received 40 � 106 autolo-
gous BM-MSCs disclosed improvement of cartilage morphol-
ogy and quality using MRI T2 mapping suggesting a possible
structural benefit of stem cell therapy [88]. In addition, in
18 patients with either ankle, hip, or knee OA, safety as well
as improvement of function and pain were noticed at
12 months post-BM-MSC transplantation, which were no
more observed at 30 months follow-up [89]. The effect of
intra-articular injection of autologous BM-MSCs 3 weeks
after high tibia osteotomy and microfracture treatment in
28 patients with knee OA was significantly better than in
the control group of 28 patients, although both groups
improved [90]. A Phase I three dose-escalation study on
18 patients and a Phase II study with the nine patients who
received the highest dose of 108 autologous ASCs demon-
strated safety, improvement of the WOMAC score, and
regeneration of thick hyaline-like cartilage at 6 months [91].
In another Phase I dose-escalation study, we also reported
improvement in pain and function in 18 patients with knee
OA who received autologous ASCs. Interestingly, the best
results were obtained with the lowest dose of 2 � 106 ASCs
as compared to the doses of 10 � 106 and 50 � 106 injected
cells (Pers et al., submitted). All these studies have demon-
strated the safety and tolerability of MSC or ASC injection
in patients with knee OA. However, there is an urgent need
for randomized, controlled studies.

7. Expert opinion

Continually, growing knowledge on MSC in terms of manage-
ment of cell isolation and expansion, molecular and functional
characterization, as well as therapeutic evaluation in pre-clinical
models of many different diseases has paved the way for MSC-
based regenerative medicine. MSC-based therapies are relevant
for chronic and degenerative disorders in aging populations,
such as OA, where no curative treatments are available. In the
present review, we have discussed the two major types of clinical
approaches for OA based on either a tissue-engineering
scaffold-based implantation of MSCs or a scaffold-free direct
injection of the stem cells into the injured joint.
The data available from the clinical trials have disclosed the

safety of both approaches with no sign of neoplastic prolifer-
ation or related side effects. However, to date, in contrast to
MACI, matrix-induced MSC implantation is not in routine
use. One possible reason for this is the inconstant reproduc-
ibility of MSC differentiation and uncontrolled in vivo stabil-
ity of the chondrocyte phenotype. Another reason is the fact
that regeneration of large lesions such as those found in
patients with high grade OA has not been demonstrated. It
is also possible that a better identification of patients who
would most benefit from these treatments is required. Profiles
of patients have to be drawn based on OA subtypes classified
according to the joint involved, the age and body mass index
(BMI), the level of pain, the grade of the disease, the

functional limitation, a history of traumas, the genetic suscep-
tibility, and the presence of relevant biomarkers. An attempt
for such classification is being discussed by the European Soci-
ety for Clinical and Economic Aspects of Osteoporosis and
Osteoarthritis (ESCEO) working group [92]. Such a classifica-
tion of OA subtypes would also benefit for other therapeutic
approaches.

Although preliminary measures of efficacy of the direct
injection of MSCs in patients with severe knee OA are encour-
aging, prospective and placebo-controlled studies are required
to determine the effectiveness of this approach. The focus of
new clinical trials should address the efficacy of MSC injection
in patients with moderate OA and early radiographic stages. In
the study by Koh and colleagues, the efficacy of MSC implan-
tation was better in OA patients with grade 3 than with grade
4 [86]. It can be speculated that MSC-based therapy should be
more efficient in preventing or limiting the structural progres-
sion of the disease at early stages. Another important issue to
be tested is the optimal dose of cells. There are huge differences
between cell doses ranging from 2� 106 to 108 cells/joint and
discrepancies between clinical trials. We observed the best effi-
cacy on pain and function with 2 � 106 ASCs/knee joint
(Pers et al., submitted) whereas Jo and collaborators noticed
improvement of pain, function, and histology with the highest
dose of 108 cells/joint [91]. We and others are evaluating this
aspect in ongoing clinical trials [93]. Besides the cell dose, the
need for repeated injections of MSCs, which should theoreti-
cally enhance or prolong the response, has not been investi-
gated. This comes along with the possibility to use
autologous MSCs that have been frozen and/or allogeneic
MSCs and the requirement to evaluate the host immune
response against the injected cells.

The exact mechanism by which MSCs exert their therapeu-
tic efficacy in patients with OA is not known. Indications
from the mouse models suggest that the main effector mech-
anism could be the modulation of inflammation that in turn
reduces cartilage degradation. Although differentiation of
injected cells into chondrocytes may occur, this is likely not
the major mechanism. It is plausible that other mechanisms,
such as inhibition of apoptosis or induction of endogenous
cell proliferation, act in concert with the immunomodulatory
effects of MSCs. This points to the notion that MSCs likely
act via the secretion of diverse molecules whose overall effect
will be difficult to reproduce by a unique molecule but rather,
a combination of molecules will be needed. This is why the
use of EVs isolated from MSC supernatants could be an alter-
native to cell-based therapies. Since EVs reproduce the func-
tions of the cells from which they originate, they should be
tested in cell-free therapeutic approaches in the many applica-
tions where MSCs have proven to be effective. Although not
yet validated for osteoarticular disease models, our prelimi-
nary data suggest that EVs can efficiently reduce histological
scores in a murine model of OA (pers. com.). Future experi-
ments are required before MSCs or MSC-derived EVs can
be used routinely in the clinic for treating patients with OA.
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